Skip to main content
Log in

A dispersion engineered PCF for broadband fiber optic parametric amplification

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We report a wide bandwidth high gain parametric sources based on dispersion engineered highly nonlinear multi-material photonic crystal fiber (PCF). The multi-material PCF compositions are made of highly nonlinear As2S3 as the background material and the first air-hole ring replaced with borosilicate rods. The unique composition is targeted for a suitable dispersion (D) profile for high gain with a wider bandwidth. The PCF profile is engineered in such a way that the D characteristics are having near-zero value and having small positive (+ve) value of fourth order dispersion parameter (β4) that favours the condition for very wide fiber optic parametric amplifier (FOPA) bandwidth. We detailed about the dependency of pump power, fiber length and operating wavelength on parametric gain and bandwidth. Based on the numerical studies, we obtained a very wide 3 dB FOPA bandwidth of around 2500 nm in the near IR region. The obtained bandwidth is very wide, and the approach presented in this article is very unique. These results will be extremely useful for devising potential photonic sources in near and mid-IR window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Agrawal, G.P.: Fiber-Optic Communication Systems, 3rd edn. Wiley, New York (2002)

    Book  Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics, Optics and Photonics Series, 4th edn. Academic Press, Boca Raton (2007)

    Google Scholar 

  • Ahmadian, A., Khatir, M., Darvish G.: Dual-band fiber optical parametric amplification in a structure of highly nonlinear photonic crystal fiber. Opt. Eng. 60(4), 046107 (2021)

    Article  ADS  Google Scholar 

  • Azura, A.N., Harith, A., Wadi, H.S.: Four Wave Mixing in a Highly Nonlinear Media. Lambert Academic Publishing, Saarbrücken (2014)

    Google Scholar 

  • Barh, A., Ghosh, S., Agrawal, G.P., et al.: Design of an efficient mid-IR light source using chalcogenide holey fibers: a numerical study. J. Opt. 15, 035205 (2013)

    Article  ADS  Google Scholar 

  • Barh, A., Ghosh, S., Varshney, R.K., et al.: An efficient broadband mid-wave IR fiber optic light source: design and performance simulation. Opt. Express. 21, 9547–9555 (2013)

    Article  ADS  Google Scholar 

  • Chaudhari, C., Suzuki, T., Ohishi, Y.: Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers. J. Lightwave Technol. 27, 2095–2099 (2009)

    Article  ADS  Google Scholar 

  • Chaudhari, A., Liao, M., Suzuki, T., Ohishi, Y.: Chalcogenide core tellurite cladding composite microstructured fiber for nonlinear applications. J. Lightwave Technol. 30, 2069–2076 (2012)

    Article  ADS  Google Scholar 

  • Courtney, L., Lopez-Zelaya, C., Amezcua-Correa, R., Keyser, C.K.: Modeling quasi-phase-matched electric-field-induced optical parametric amplification in hollow-core photonic crystal fibers. Opt. Express 29, 11962–11975 (2021)

    Article  ADS  Google Scholar 

  • CUDOS MOF utilities. http://www.physics.usyd.edu.au/cudos/mofsoftware/

  • Da, N., Wondraczek, L., Schmidt, M.A., Granzow, N., Russell, P.S.J.: High index-contrast all-solid photonic crystal fibers by pressure- assisted melt infiltration of silica matrices. J. Non-Cryst. Solids. 356, 1829–1836 (2010)

    Article  ADS  Google Scholar 

  • Deb, R., Maji, P.S.: Effect of HOD parameters on gain and bandwidth of parametric amplifiers for near-zero ultra-flat dispersion profile. Optik 195, 163158 (2019)

    Article  ADS  Google Scholar 

  • Deb, R., Maji, P.S.: Investigation of parametric gain and bandwidth of tellurite hybrid micro-structured fiber with four ZDWs. Opt. Quant. Electron. 53(12), 1–18 (2021)

    Article  Google Scholar 

  • Eggleton, J., Davies, B.L., Richardson, K.: Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011)

    Article  ADS  Google Scholar 

  • El-Amraoui, M., Gadret, G., Jules, J.C., Fatome, J., Fortier, C., Désévédavy, F., Skripatchev, I., Messaddeq, Y., Troles, J., Brilland, L., Gao, W., Suzuki, T., Ohishi, Y., Smektala, F.: Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources. Opt. Express. 18, 26655–26665 (2010)

    Article  ADS  Google Scholar 

  • Ferrando, A., Silvestre, E., Andrés, P., et al.: Designing the properties of dispersion flattened photonic crystal fibers. Opt. Express. 9, 687–697 (2001)

    Article  ADS  Google Scholar 

  • Gander, M.J., McBride, R., Jones, J.D.C., et al.: Experimental measurement of group velocity dispersion in photonic crystal fibre. Electron. Lett. 35, 63–64 (1999)

    Article  ADS  Google Scholar 

  • Granzow, N., Uebel, P., Schmidt, M.A., Tverjanovich, A.S., Wondraczek, L., Russell, P.S.J.: Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers. Opt. Lett. 36, 2432–2434 (2011)

    Article  ADS  Google Scholar 

  • Hewak, W.: The promise of chalcogenides. Nat. Photon. 5, 474 (2011)

    Article  ADS  Google Scholar 

  • Jackson, S.D.: Towards high-power mid-infrared emission from a fibre laser. Nat. Photon. 6, 423–431 (2012)

    Article  ADS  Google Scholar 

  • Kalraa, S., et al.: Investigation of As2S3-borosilicate chalcogenide glass-based dispersion-engineerd photonic crystal fibre for broadband supercontinuum generation in the mid-IR region. J. Mod. Opt. 67(10), 920–926 (2020)

    Article  ADS  Google Scholar 

  • Kuhlmey, B.T., McPhedran, R.C., Martijn de Sterke, C., Robinson, P.A., Renversez, G., Maystre, D.: Microstructured optical fibers: where’s the edge? Opt. Express. 10, 1285–1290 (2002)

    Article  ADS  Google Scholar 

  • Kuhlmey, B.T., White, T.P., McPhedran, R.C., Maystre, D., Renversez, G., de Sterke, C.M., Botten, L.C.: Multipole method for microstructured optical fibers. II. Implementation and results. J. Opt. Soc. Am. B 19, 2331–2340 (2002)

    Article  ADS  Google Scholar 

  • Kuhlmey, B., Renversez, G., Maystre, D.: Chromatic dispersion and losses of microstructured optical fibers. Appl. Opt. 42, 634–639 (2003)

    Article  ADS  Google Scholar 

  • Maji, P.S., Chaudhuri, P.R.: A new design for all-normal near zero dispersion photonic crystal fiber with selective liquid infiltration for broadband supercontinuum generation at 1.55 μm. J. Photon. 14, 728592 (2014)

    Google Scholar 

  • Maji, P.S., Roy Chaudhuri, P.: Design of all-normal dispersion based on multi-material photonic crystal fiber in IR region for broadband supercontinuum generation. Appl. Opt. 54, 4042–4048 (2015)

    Article  ADS  Google Scholar 

  • Maji, P.S., Roy Chaudhuri, P.: Gain and bandwidth investigation in a near zero ultra-flat dispersion PCF for optical parametric amplification around the communication wavelength. App. Opt. 54, 3263–3272 (2015)

    Article  ADS  Google Scholar 

  • Maji, P.S., RoyChaudhuri, P.: A new design methodology of obtaining wide band high gain broadband parametric source for IR wavelength applications. J. Appl. Phys. (AIP) 119, 113102 (2016)

    Article  ADS  Google Scholar 

  • Pakarzadeh, H., Hasanpuri, F., Hosseinabadi, S., Sarif, V.: Thermally tuned parametric gain in photonic crystal fiber-based amplifiers. Eur. Phys. J. plus 136, 298 (2021)

    Article  Google Scholar 

  • Poletti, F., Finazzi, V., Monro, T.M., Broderick, N.G.R., Tse, V., Richardson, D.J.: Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. Opt. Express. 13, 3728–3736 (2005)

    Article  ADS  Google Scholar 

  • Quentin, C., Laurent, B., Patrick, H., Nam, N.T., Thierry, C., Gilles, R., Achille, M., Julien, F., Frédéric, S., Thierry, P., Hervé, O., Jean-Christophe, S., Johann, T.: Fabrication of low losses chalcogenide photonic crystal fibers by molding process. Proc. SPIE. 7598, 75980O (2010)

    Article  Google Scholar 

  • Reeves, W.H., Knight, J.C., Russell, P.S.J., Roberts, P.J.: Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Express. 10, 609–613 (2002)

    Article  ADS  Google Scholar 

  • Russell, P.S.J.: Photonic-crystal fibers. J. Lightwave Technol. 24, 4729–4749 (2006)

    Article  ADS  Google Scholar 

  • Saitoh, K., Koshiba, M.: Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Opt. Express. 12, 2027–2032 (2004)

    Article  ADS  Google Scholar 

  • Saitoh, K., Koshiba, M., Mortensen, N.A.: Nonlinear photonic crystal fibers: pushing the zero-dispersion towards the visible. New J. Phys. 8, 207–215 (2006)

    Article  ADS  Google Scholar 

  • Sanghera, S., Aggarwal, I.D., Shaw, L.B., Busse, L.E., Thielen, P., Nguyen, V., Pureza, P., Bayya, S., Kung, F.: Applications of chalcogenide glass optical fibers at NRL. J. Optoelectron. Adv. Mater. 3, 627–640 (2001)

    Google Scholar 

  • Sanghera, J., Florea, C., Busse, L., Shaw, B., Miklos, F., Aggarwal, I.: Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces. Opt. Express. 18, 26760–26768 (2010)

    Article  ADS  Google Scholar 

  • Tao, G., Shabahang, S., Banaei, E.H., Kaufman, J.J., Abouraddy, A.F.: Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers. Opt. Lett. 37, 2751–2753 (2012a)

    Article  ADS  Google Scholar 

  • Tao, G., Abouraddy, A.F., Stolyarov, A.M.: Multimaterial fibres. Int. J. Appl. Glass Sci. 3, 349–368 (2012b)

    Article  Google Scholar 

  • White, T.P., Kuhlmey, B.T., McPhedran, R.C., Maystre, D., Renversez, G., de Sterke, C.M., Botten, L.C.: Multipole method for microstructured optical fibers. I. Formulation. J. Opt. Soc. Am. B 19, 2322–2330 (2002)

    Article  ADS  Google Scholar 

  • Yamashita, T., Ohishi, Y.: Cooperative energy transfer between Tb3+ and Yb3+ ions co-doped in borosilicate glass. J. Non-Cryst. Solids. 354(17), 1883–1890 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Sona Maji.

Ethics declarations

Conflict of interest

The authors hereby declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, B., Deb, R., Sutradhar, S. et al. A dispersion engineered PCF for broadband fiber optic parametric amplification. Opt Quant Electron 54, 557 (2022). https://doi.org/10.1007/s11082-022-03957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03957-5

Keywords

Navigation