Skip to main content
Log in

Luminescence thermometry based on Y2O2S:Er,Yb nanophosphor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present possibility analysis of using Y2O2S:Er,Yb for temperature sensing. Material samples were obtained by solution combustion method. We have used pulsed laser diode excitation at 980 nm. Our analysis is based on time resolved luminescence spectra acquired by a streak camera. Intensity ratios of prominent luminescence peaks were used for determining the temperature sensing curves. We compare the synthesized Y2O2S:Er,Yb material with other thermophosphors, showing its usefulness for temperature measurements up to 620 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alden, M., Omrane, A., Richter, M., Särner, G.: Thermographic phosphors for thermometry: A survey of combustion applications. Prog. Energy Combust. Sci. 37, 422–461 (2011)

    Article  Google Scholar 

  • Alencar, M.A.R.C., Maciel, G.S., de Araújo, C.B.: Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl. Phys. Lett. 84, 4753 (2004)

    Article  ADS  Google Scholar 

  • Ang, L.Y., Lim, M.E., Ong, L.C., Zhang, Y.: Applications of upconversion nanoparticles in imaging, detection and therapy. Nanomedicine. 6, 1273–1288 (2011)

    Article  Google Scholar 

  • Allison, S.W., Gillies, G.T.: Remote thermometry with thermographic phosphors: Instrumentation and applications. Rev. Sci. Instrum. 68, 2615–2650 (1997)

    Article  ADS  Google Scholar 

  • Avram, D., Tiseanu, C.: Thermometry properties of Er, Yb–Gd2O2S microparticles: dependence on the excitation mode (cw versus pulsed excitation) and excitation wavelength (980 nm versus 1500 nm). Methods Appl. Fluoresc. 6, 025004 (2018)

    Article  ADS  Google Scholar 

  • Brites, C.D.S., Lima, P.P., Silva, N.J.O., Millan, A., Amaral, V.S., Palacio, F., Carlos, L.D.: Thermometry at the nanoscale. Nanoscale. 4, 4799–4829 (2012)

    Article  ADS  Google Scholar 

  • Cates, M.R., Allison, S.W., Jaiswal, S.L., Beshears, D.L.: YAG:Dy and YAG:Tm Fluorescence above 1400 C. Oak Ridge National Laboratory (2002). Report ORNL/TM-2002/71

  • Ciric, A., Gavrilovic, T., Dramicanin, M.D.: Luminescence Intensity Ratio Thermometry with Er3+: Performance Overview. Crystals. 11, 189 (2021)

    Article  Google Scholar 

  • Dong, B., Liu, D.P., Wang, X.J., Yang, T., Miao, S.M., Li, C.R.: Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3. Appl. Phys. Lett. 90, 181117 (2007)

    Article  ADS  Google Scholar 

  • Du, P., Deng, A.M., Luo, L., Yu, J.S.: Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for a non-invasion optical thermometer. New. J. Chem. 41, 13855–13861 (2017)

    Article  Google Scholar 

  • Du, P., Yu, J.S.: Synthesis of Er(III)/Yb(III)-doped BiF3 upconversion nanoparticles for use in optical thermometry. Microchim. Acta. 185, 237–231 (2018)

    Article  Google Scholar 

  • Đačanin, L.R., Lukić-Petrović, S.R., Petrović, D.M., Nikolić, M.G., Dramićanin, M.D.: Temperature quenching of luminescence emission in Eu3+- and Sm3+-doped YNbO4 powders. J. Lumin. 151, 82–87 (2014)

    Article  Google Scholar 

  • Đačanin, L.R., Dramićanin, M.D., Lukić-Petrović, S.R., Petrović, D.M., Nikolić, M.G.: Eu3+ doped YNbO4 phosphor properties for fluorescence Thermometry. Radiat. Meas. 56, 143–146 (2013)

    Article  Google Scholar 

  • Eldridge, J.I., Jenkins, T.P., Allison, S.W., Wolfe, D.E., Jordan, E.H.: Development of YAG:Dy Thermographic Phosphor Coatings for Turbine Engine Applications, 58 h International Instrumentation Symposium San Diego, CA, June 5–8, (2012)

  • Feist, J.P., Heyes, A.L., Choy, K.L., Su, B.: Phosphor Thermometry for High Temperature Gas Turbine Applications. Proceedings of IEEE; 6.1 (1999)

  • Feist, J.P., Heyes, A.L.: The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications. Meas. Sci. Technol. 11, 942–947 (2000)

    Article  ADS  Google Scholar 

  • Ferreira, M.F., de Sousa, K.Z.R., Massarotto, W.L., Ricci, E.G., de Faria, E.H., Ciuffi, K.J., Sevic, D., Rocha, L.A., Nassar, E.J.: Er3+/Yb3+-Doped GdVO4 Obtained by the Non-Hydrolytic Sol-Gel Route and Potential Application as Up-Conversion Thermometer. J. Braz Chem. Soc. 32, 376–384 (2021)

    Google Scholar 

  • Gavrilovic, T.V., Jovanovic, D.J., Smits, K., Dramicanin, M.D.: Multicolor upconversion luminescence of GdVO4:Ln3+/Yb3+(Ln3+ = Ho3+, Er3+, Tm3+, Ho3+/Er3+/Tm3+) nanorods. Dyes Pigm. 126, 1–7 (2016)

    Article  Google Scholar 

  • Gavrilović, T.V., Jovanović, D.J., Lojpur, V., Dramićanin, M.D.: Multifunctional Eu3+- and Er3+/ Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method. Sci. Rep. 4, 4209 (2014)

    Article  ADS  Google Scholar 

  • Geitenbeek, R.G., Prins, P.T., Albrecht, W., van Blaaderen, A., Weckhuysen, B.M., Meijerink, A.: NaYF4:Er3+,Yb3+/SiO2 Core/Shell Upconverting Nanocrystals for Luminescence Thermometry up to 900 K. J. Phys. Chem. C Nanomater Interfaces. 121, 3503–3510 (2017)

    Article  Google Scholar 

  • Goss, L.P., Smith, A.A., Post, M.E.: Surface thermometry by laser-induced fluorescence. Rev. Sci. Instrum. 60, 3702–3706 (1989)

    Article  ADS  Google Scholar 

  • Hashemi, A., Vetter, A., Jovicic, G., Batentschuk, M., Brabec, C.J.: Meas. Sci. Technol. 26, 075202 (2015)

    Article  ADS  Google Scholar 

  • Heyes, A.L.: On the design of phosphors for high-temperature thermometry. J. Lumin. 129, 2004–2009 (2009)

    Article  Google Scholar 

  • Jaque, D., Vetrone, F.: Luminescence nanothermometry. Nanoscale. 4, 4301–4326 (2012)

    Article  ADS  Google Scholar 

  • Khalid, A.H., Kontis, K.: Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications. Sensors. 8, 5673–5774 (2008)

    Article  ADS  Google Scholar 

  • Krizan, J., Mazaj, M., Kaucic, V., Bajsic, I., Mozina, J.: Synthesis of Er- and Yb-doped Gadolinium Oxide Polymorphs and Influence of Their Structureson Upconversion Properties. Acta Chim. Slov. 61, 608–614 (2014)

    Google Scholar 

  • Kumar, G.A., Pokhrel, M., Martinez, A., Dennis, R.C., Villegas, I.L., Sardar, D.K.: Synthesis and spectroscopy of color tunable Y2O2S:Yb3+,Er3+ phosphors with intense emission. J. Alloys Compd. 513, 559–565 (2012)

    Article  Google Scholar 

  • Li, X., Song, Y., Yang, Y., Mi, C., Liu, Y., Yu, F., Liu, L., Zhang, J., Li, Z.: Structure and Optical Thermometry Characterization of Er3+/Yb3+ Co-Doped BaGd2CuO5. J. Nanosci. Nanotechnol. 16, 3542–3546 (2016)

    Article  Google Scholar 

  • Li, D., Qin, W., Zhang, P., Wang, L., Lan, M., Shi, P.: Efficient luminescence enhancement of Y2O2S:Ln3+ (Ln = Yb/Er, Eu) NCs by codoping Zn2+ and Li+ inert ions. Opt. Mater. Express. 7, 329 (2017)

    Article  ADS  Google Scholar 

  • Li, L., Zheng, L., Xu, W., Liang, Z., Zhou, Y., Zhang, Z., Cao, W.: Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder. Opt. Lett. 41, 1458–1461 (2016)

  • Liu, L., Qin, F., Lv, T., Zhang, Z., Cao, W.: Accurate thermometry based on the red and green fluorescence intensity ratio in NaYF4: Yb, Er nanocrystals for bioapplication. Opt. Lett. 41, 4664–4667 (2016)

  • Lojpur, V., Ahrenkiel, P., Dramićanin, M.D.: Color-tunable up-conversion emission in Y2O3:Yb3+,Er3+ nanoparticles prepared by polymer complex solution method. Nanoscale Res. Lett. 8, 131 (2013)

    Article  ADS  Google Scholar 

  • Lojpur, V., Antic, Z., Krsmanovic, R., Medic, M., Nikolic, M.G., Dramicanin, M.D.: Thermographic properties of Eu3+- and Sm3+-doped Lu2O3nanophosphor. J. Serb Chem. Soc. 77, 1735–1746 (2012)

    Article  Google Scholar 

  • Lojpur, V., Culubrk, S., Medic, M., Dramicanin, M.D.: Luminescence thermometry with Eu3+ doped GdAlO3. J. Lumin. 170, 467–471 (2016B)

  • Lojpur, V., Culubrk, S., Dramicanin, M.D.: Ratiometric luminescence thermometry with different combinations of emissions from Eu3+ doped Gd2Ti2O7 nanoparticles. J. Lumin. 169, 534–538 (2016A)

  • Lu, Z., Zhongmin, C., Xiantao, W., Min, Y., Yonghu, C.: Luminescence properties of Eu3 + doped YBO3 for temperature sensing. J. Rare Earths. 35, 356–360 (2017)

    Article  Google Scholar 

  • Manzani, D., Petruci, J.F., Nigoghossian, S., Cardoso, K., Ribeiro, A.A.: S.J.L.: A portable luminescent thermometer based on green upconversion emission of Er3+/Yb3+ co-doped tellurite glass. Scientific Reports 7:41596 (2017). DOI: https://doi.org/10.1038/srep41596

  • Nikolic, M.G., Rabasovic, M.S., Krizan, J., Savic-Sevic, S., Rabasovic, M.D., Marinkovic, B.P., Vlasic, A., Sevic, D.: Luminescence thermometry using Gd2Zr2O7:Eu3+. Opt. Quant. Electron. 50, 258–251 (2018)

    Article  Google Scholar 

  • Nikolic, M.G., Al-Juboori, A.Z., Djordjevic, V., Dramicanin, M.D.: Temperature luminescence properties of Eu3+-doped Gd2O3 phosphors. Phys. Scr. T157, 014056–014051 (2013)

    Article  ADS  Google Scholar 

  • Nikolic, M.G., Antic, Z., Culubrk, S., Nedeljkovic, S., Dramicanin, J.M.: Temperature sensing with Eu3+ doped TiO2 nanoparticles. Sens. Actuators B. 201, 46–50 (2014)

    Article  Google Scholar 

  • Santos dos, P.V., Araujo de, M.T., Gouveia-Neto, M.T., Medeiros Neto, A.S., Sombra, J.A.: Optical Thermometry Through Infrared Excited Upconversion Fluorescence Emission in Er- and ErYb -doped Chalcogenide Glasses. IEE J. Quantum Electron. 35, 395–399 (1999)

    Article  ADS  Google Scholar 

  • Savchuk, O.A., Carvajal, J.J., Cascales, C., Aguilo, M., Díaz, F.: Benefits of Silica Core – Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles. ACS Appl. Mater. Interfaces 8, 7266 (2016A)

  • Savchuk, O.A., Carvajal, J.J., Massons, J., Cascales, C., Aguiló, M., Díaz, F.: Novel low-cost, compact and fast signal processing sensor for ratiometric luminescent nanothermometry. Sens. Actuators, A250, 87 (2016B)

  • Sevic, D., Rabasovic, M.S., Krizan, J., Savic-Sevic, S., Nikolic, M.G., Marinkovic, B.P., Rabasovic, M.D.: YVO4:Eu3+ nanopowders: multi-mode temperature sensing technique Phys, J.: D: Appl. Phys. 53, 015106–015101 (2020A)

  • Sevic, D., Rabasovic, M.S., Krizan, J., Savic-Sevic, S., Rabasovic, M.D., Marinkovic, B.P., Nikolic, M.G.: Effects of temperature on luminescent properties of Gd2O3:Er, Yb nanophosphor. Optical and Quantum Electronics 52, 232 (2020B)

  • Sevic, D., Krizan, J., Rabasovic, M.S., Marinkovic, B.P.: Temperature sensing using YAG:Dy single-crystal phosphor. Eur. Phys. J. D. 75, 56 (2021)

    Article  ADS  Google Scholar 

  • Singh, S.K., Kumar, K., Rai, S.B.: Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry. Sens. Actuators A. 149, 16–20 (2009)

    Article  Google Scholar 

  • Tian, Y., Fu, Y., Xing, M., Luo, X.: X.: Upconversion Luminescence Properties of Y2O3:Yb, Er and Y2O2S:Yb, Er Nanoparticles Prepared by Complex Precipitation. J. Nanomater., 573253 (2015)

  • Vlasic, A., Sevic, D., Rabasovic, M.S., Krizan, J., Savic-Sevic, S., Rabasovic, M.D., Mitric, M., Marinkovic, B.P., Nikolic, M.G.: Effects of temperature and pressure on luminescent properties of Sr2CeO4:Eu3+ nanophosphor. J. Lumin. 199, 285–292 (2018)

    Article  Google Scholar 

  • Wang, X., Liu, Q., Bu, Y., Liu, C.-S., Liua, T., Yan, X.: Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 5, 86219–86236 (2015)

    Article  ADS  Google Scholar 

  • Wang, H., Xing, M., Luo, X., Zhou, X., Fu, Y., Jiang, T., Peng, Y., Ma, Y., Duan, X.: Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 lm and 980 nm excitation. J. Alloys Compd. 587, 344–348 (2014)

    Article  Google Scholar 

  • Wei, T., Yang, F., Jing, Q., Zhao, C., Wang, M., Du, M., Guo, Y., Zhou, Q., Li, Z.: Optical multi-functionalities of Er3+- and Yb3+-sensitized strontium bismuth titanate nanoparticles. J. Alloys Compd. 801, 1–9 (2019)

    Article  Google Scholar 

  • Wu, J., Cheng, X., Jiang, F., Feng, X., Huang, Q., Lin, Q.: Optical temperature sensing properties of Er3+/Yb3+ co-doped LuVO4 upconversion phosphors. Phys. B. 561, 97 (2019)

    Article  ADS  Google Scholar 

  • Xu, W., Gao, X., Zheng, L., Wang, P., Zhang, Z., Cao, W.: Optical Thermometry through Green Upconversion Emissions in Er3+/Yb3+-Codoped CaWO4 Phosphor. Appl. Phys. Express. 5, 072201 (2012)

    Article  ADS  Google Scholar 

  • Zhao, Y., Wang, X., Zhang, Y., Li, Y., Yao, X.: Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress. J. Alloys Compd. 817, 152691 (2020).

Download references

Acknowledgements

This work was financially supported by funding provided by the Institute of Physics Belgrade, through the grant by the Ministry of Education, Science, and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sevic.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Photonics: Current Challenges and Emerging Applications, Guest edited by Jelena Radovanovic, Dragan Indjin, Maja Nesic, Nikola Vukovic and Milena Milosevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevic, D., Rabasovic, M.S., Križan, J. et al. Luminescence thermometry based on Y2O2S:Er,Yb nanophosphor. Opt Quant Electron 54, 523 (2022). https://doi.org/10.1007/s11082-022-03885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03885-4

Keywords

Navigation