Skip to main content

Advertisement

Log in

Design and investigation of gold photocathode performance based on asymmetric plasmonic nano-grattings

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Plasmonic structures have increasing applications in optical components and detection. Today, in order to increase the quantum efficiency of metal photocathodes, plasmonic waves are used to provide the confinement conditions and increase the electric field at the surface of the structure. In this research, a gold photocathode with an asymmetric nano-gratting surface is designed as two nano-grooves with different widths and is exposed to photonic radiation. Using FDTD method, the performance of the above photocathode is investigated, and its absorption and reflectance spectra have been calculated. According to the reflection spectrum, the surface plasmon polaritons are excited at their specific wavelengths and reduced the light reflection from the surface of the plasmonic structure. Using this technique, it is possible to create two simultaneous intensities in the reflectance spectrum, which leads to more photon absorption and better selectivity in selecting the desired wavelength or wavelengths. Also, the relative quantum efficiency of nano-gratting photocathodes relative to flat surfaces has been calculated. The results showed that each diagram has two distinct peaks, which are due to the resonance of surface plasmon polaritons and have greatly increased the efficiency compared to the flat surface. Under optimal conditions, the maximum quantum efficiency increased 55 times compared to the flat surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An, C., Zhu, R., Xu, J., Liu, Y., Yu, D.: Quantum efficiency, intrinsic emittance, and response time measurements of a titanium nitride photocathode. Phys. Rev. Acceler. Beams 24(9), 093401 (2021)

    Article  ADS  Google Scholar 

  • Arabkhorasani, A., Khalilzadeh, J., Dizaji, H.Z., Shahamat, Y.: Performance evaluation of metal photocathodes based on plasmonic nano-grating. Optik 252, 168538 (2022)

    Article  ADS  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  ADS  Google Scholar 

  • Dhawan, A., Canva, M., Vo-Dinh, T.: Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt. Express 19(2), 787–813 (2011)

    Article  ADS  Google Scholar 

  • Dowell, D.H., Schmerge, J.F.: Quantum efficiency and thermal emittance of metal photocathodes. Phys. Rev. Spec. Top. Acceler. Beams 12(7), 074201 (2009)

    Article  ADS  Google Scholar 

  • Dowell, D.H., King, F.K., Kirby, R.E., Schmerge, J.F., Smedley, J.M.: In situ cleaning of metal cathodes using a hydrogen ion beam. Phys. Rev. Spec. Top. Acceler. Beams 9(6), 063502 (2006)

    Article  ADS  Google Scholar 

  • Drachev, V.P., Chettiar, U.K., Kildishev, A.V., Yuan, H.K., Cai, W., Shalaev, V.M.: The Ag dielectric function in plasmonic metamaterials. Opt. Express 16(2), 1186–1195 (2008)

    Article  ADS  Google Scholar 

  • Flyckt, S.O. (Ed.).: Photomultiplier tubes: principles and applications. Photonis (2002)

  • Foroutan, S., Dizaji, H.Z., Riahi, A.: Plasmon resonance-enhanced photocathode by light trapping in periodic concentric circular nanocavities on gold surface. Optik 138, 223–228 (2017)

    Article  ADS  Google Scholar 

  • Hobbs, R.G., Yang, Y., Fallahi, A., Keathley, P.D., De Leo, E., Kärtner, F.X., Berggren, K.K.: High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays. ACS Nano 8(11), 11474–11482 (2014)

    Article  Google Scholar 

  • Jiang, Z., Gu, Q., Li, X., Wang, E., Gaowei, M., Liu, W.: Monte Carlo simulations of electron photoemission from plasmon-enhanced bialkali photocathode. Phys. Rev. Acceler. Beams 24(3), 033402 (2021)

    Article  ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  • Kim, S., Jin, J., Kim, Y.J., Park, I.Y., Kim, Y., Kim, S.W.: High-harmonic generation by resonant plasmon field enhancement. Nature 453(7196), 757–760 (2008)

    Article  ADS  Google Scholar 

  • Lee, S.W., Attenkofer, K., Walters, D., Demarteau, M., Yusof, Z.: Optimization of transmission mode metallic (aluminum) photocathodes. Phys. Procedia 37, 757–764 (2012)

    Article  ADS  Google Scholar 

  • Li, R.K., To, H., Andonian, G., Feng, J., Polyakov, A., Scoby, C.M., Musumeci, P.: Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode. Phys. Rev. Lett. 110(7), 074801 (2013)

    Article  ADS  Google Scholar 

  • Liu, L., Lu, F., Tian, J., Zhangyang, X., Lv, Z.: The effective light-harvesting performance of graded compositional AlxGa1-xN nano-cone arrays photocathode for ultraviolet detector—A numerical investigation and simulation. Int. J. Energy Res. 44(7), 5779–5790 (2020)

    Article  Google Scholar 

  • Musumeci, P., Cultrera, L., Ferrario, M., Filippetto, D., Gatti, G., Gutierrez, M.S., Vicario, C.: Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an rf photoinjector. Phys. Rev. Lett. 104(8), 084801 (2010)

    Article  ADS  Google Scholar 

  • Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)

    Article  ADS  Google Scholar 

  • Polyakov, A., Cabrini, S., Dhuey, S., Harteneck, B., Schuck, P.J., Padmore, H.A.: Plasmonic light trapping in nanostructured metal surfaces. Appl. Phys. Lett. 98(20), 203104 (2011)

    Article  ADS  Google Scholar 

  • Polyakov, A., Senft, C., Thompson, K.F., Feng, J., Cabrini, S., Schuck, P.J., Padmore, H.A., Peppernick, S.J., Hess, W.P.: Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources. Phys. Rev. Lett. 110(7), 076802 (2013)

    Article  ADS  Google Scholar 

  • Townsend, P.D.: Photocathodes—past performance and future potential. Contemp. Phys. 44(1), 17–34 (2003)

    Article  ADS  Google Scholar 

  • Tsang, T., Srinivasan-Rao, T., Fischer, J.: Surface-plasmon field-enhanced multiphoton photoelectric emission from metal films. Phys. Rev. B 43(11), 8870 (1991)

    Article  ADS  Google Scholar 

  • Xia, S., Liu, L., Kong, Y.: Research on quantum efficiency and photoemission characteristics of negative-electron-affinity GaN nanowire arrays photocathode. Opt. Quant. Electron. 48(5), 306 (2016)

    Article  Google Scholar 

  • Xiang, R., Teichert, J.: Photocathodes for high brightness photo injectors. Phys. Procedia 77, 58–65 (2015)

    Article  ADS  Google Scholar 

  • Zhu, S., Chen, L., Qian, Y., Jani, H., Duan, L.: Characteristic research of uniform-doping and exponential-doping Ga1-xAlxAs/GaAs photocathode with femtosecond laser illumination. Optik 183, 629–634 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Khalilzadeh.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabkhorasani, A., Khalilzadeh, J., Dizaji, H.Z. et al. Design and investigation of gold photocathode performance based on asymmetric plasmonic nano-grattings. Opt Quant Electron 54, 594 (2022). https://doi.org/10.1007/s11082-022-03845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03845-y

Keywords

Navigation