Skip to main content
Log in

Effect of lanthanum substrates on the structural, optical and electrical properties of copper selenide thin films designed for 5G technologies

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, copper selenide thin films coated onto glass and transparent lanthanum substrates are studied. The (glass, La)/CuSe thin films which are prepared by the thermal evaporation technique under a vacuum pressure of 10−5 mbar are structurally, morphologically, optically, dielectrically and electrically characterized. Lanthanum substrates improved the crystallinity by increasing the crystallite size and decreasing both of the microstrains and defect density of copper selenide. La substrates redshifts the energy band gap and doubled the dielectric constant values. In addition, employing Drude–Lorentz approaches for optical conduction to fit the dielectric constant provided information about the effects of La substrates on the drift mobility, plasmon frequency, free carrier density and scattering times at femtosecond level. The drift mobility increased and the plasmon frequency range is modified when La substrates are used. Verifying impedance spectroscopy tests in the microwave frequency domain have shown the ability of the La(gate)/CuSe/Ag (source) transistors performing as band pass filters. These filters are suitable for 5G technologies. The microwave cutoff frequency reached ~ 5.0 GHz at a notch frequency of 2.80 GHz of the glass/La/CuSe/Ag highpass filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abd-Elnaiem, A.M., Mahmoud, A.Z., Moustafa, S.: Structural and optical properties of thermally evaporated and annealed Ge20Se76Sn4 thin films. Opt. Mater. 111, 110607 (1–12) (2021)

  • Ai, K., Huang, J., Xiao, Z., Yang, Y., Bai, Y., Peng, J.: Localized surface plasmon resonance properties and biomedical applications of copper selenide nanomaterials. Mater. Today Chem. 20, 100402 (2021)

    Article  Google Scholar 

  • Algarni, S.E., Qasrawi, A.F., Khusayfan, N.M.: Design and characterization of ZnSe/GeO2 heterojunctions as bandstop filters and negative capacitance devices. Phys. Status Solidi (a) 218(8), 2000830 (2021)

    Article  ADS  Google Scholar 

  • AlGarni, S.E., Qasrawi, A.F.: Indium slabs induced structural phase transitions and their effects on the electrical and optical properties of stacked layers of the thermally annealed Cu2O thin films. Results Phys. 16, 102901 (2020)

  • Alharbi, S.R., Qasrawi, A.F.: Structural and optoelectronic properties of MoO3/CuSe interfaces. Phys. Status Solidi (a) 216(6), 1800977 (2019)

    Article  ADS  Google Scholar 

  • Al-Yasir, Y.I., Ojaroudi Parchin, N., Abd-Alhameed, R.A., Abdulkhaleq, A.M., Noras, J.M.: Recent progress in the design of 4G/5G reconfigurable filters. Electronics 8(1), 114 (2019a)

    Article  Google Scholar 

  • Al-Yasir, Y.I., Parchin, N.O., Alabdallah, A., Abdulkhaleq, A. M., Sajedin, M., Elfergani, I.T., Abd-Alhameed, R.A.: Design, simulation and implementation of very compact open-loop trisection BPF for 5G communications. In: 2019 IEEE 2nd 5G World Forum (5GWF), pp. 189–193. IEEE (2019b). https://doi.org/10.1109/5GWF.2019.8911677

  • Arumugam, S., Saravanan, C., Thiyagarajan, R., Rao, G.N.: Effect of hydrostatic pressure on electrical resistivity of La0.5Ca0.5Mn1xMoxO3 (x = 003 and 005) manganites: experimental and theoretical approaches. J. Magn. Magn. Mater. 507, 166775 (2020)

    Article  Google Scholar 

  • Bagde, G.D., Sartale, S.D., Lokhande, C.D.: Spray pyrolytic deposition and characterization of lanthanum selenide (La2Se3) thin films. Appl. Surf. Sci. 214(1–4), 27–35 (2003)

    Article  ADS  Google Scholar 

  • Barman, B., Handique, K.C., Nanung, Y., Kalita, P.K.: Synthesis and characterization of chemically synthesized CuSe nanoparticles for photovoltaic application. Mater. Today Proc. 46, 6213–6217 (2021)

    Article  Google Scholar 

  • Bruck, A.M., Cama, C.A., Gannett, C.N., Marschilok, A.C., Takeuchi, E.S., Takeuchi, K.J.: Nanocrystalline iron oxide based electroactive materials in lithium ion batteries: the critical role of crystallite size, morphology, and electrode heterostructure on battery relevant electrochemistry. Inorg. Chem. Front. 3(1), 26–40 (2016)

    Article  Google Scholar 

  • Chakrabarti, D.J., Laughlin, D.E.: The Cu–Se (copper–selenium) system. Bull. Alloys Phase Diagrams 2(3), 305–315 (1981)

    Article  Google Scholar 

  • Cotter, D., Burt, M.G., Manning, R.J.: Below-band-gap third-order optical nonlinearity of nanometer-size semiconductor crystallites. Phys. Rev. Let. 68(8), 1200 (1992)

    Article  ADS  Google Scholar 

  • Guschlbauer, J., Vollgraff, T., Xie, X., Fetoh, A., Sundermeyer, J.: Heavy silylchalcogenido lanthanates Ph4P [Cp3La-ESiMe3](E = S, Se, Te) via fluoride-induced demethylation of dimethylcarbonate to Ph4P [OCO2Me] key intermediate. Dalton Trans. (2021). https://doi.org/10.1039/d1dt02000e

    Article  Google Scholar 

  • Hussain, R.A., Hussain, I.: Copper selenide thin films from growth to applications. Solid State Sci. 100, 106101 (2020)

    Article  Google Scholar 

  • Janney, M.A., Kimrey, H.D., Schmidt, M.A., Kiggans, J.O.: Grain growth in microwave-annealed alumina. J. Am. Ceram. Soc. 74(7), 1675–1681 (1991)

    Article  Google Scholar 

  • Khusayfan, N.M., Khanfar, H.K., Alharbi, S.R.: Design and characterization of Au/CdSe/GeO2/C MOSFET devices. Mater. Res. 24, 895 (2021)

    Google Scholar 

  • Lee, W., Chen, S.Y., Tseng, E., Gloter, A., Chen, C.L.: Study of defect structure in ferromagnetic nanocrystalline CeO2: effect of ionic radius. J Phys. Chem. C 120(27), 14874–14882 (2016)

    Article  Google Scholar 

  • Malavekar, D.B., Bulakhe, R.N., Kale, S.B., Patil, U.M., In, I., Lokhande, C.D.: Synthesis of layered copper selenide on reduced graphene oxide sheets via SILAR method for flexible asymmetric solid-state supercapacitor. J. Alloys Compd. 869, 159198 (2021)

    Article  Google Scholar 

  • Namsani, S., Gahtori, B., Auluck, S., Singh, J.K.: An interaction potential to study the thermal structure evolution of a thermoelectric material: β-Cu2Se. J. Comput. Chem. 38(25), 2161–2170 (2017)

    Article  Google Scholar 

  • Pankove, J.I.: Optical processes in semiconductors. Courier Corporation, North Chelmsford (1975)

    Google Scholar 

  • Polyakov, O.: Technology of Ferroalloys with Rare-Earth Metals. In: Handbook of Ferroalloys, pp. 459–469. Butterworth-Heinemann (2013)

  • Pozar, D.M.: Microwave Engineering. Wiley, New York (2011)

    Google Scholar 

  • Qasrawi, A.F., Omareya, O.A.: Formation and characterization of Cd2S3 polycrystalline films onto glass and lanthanum substrates. J. Electron. Mater. 48(4), 2350–2355 (2019)

    Article  ADS  Google Scholar 

  • Qasrawi, A.F., Yaseen, N.: MA: Yb/MoO3/In2Se3/Ag sensors designed as tunneling diodes, MOSFETs, microwave resonators, laser sensors, and VLC receivers suitable for 4G/5G and VLC technologies. IEEE Trans. Electron Devices (2021). https://doi.org/10.1109/TED.2021.3115994

    Article  Google Scholar 

  • Råsander, M., Bergqvist, L., Delin, A.: Density functional theory study of the electronic structure of fluorite Cu2Se. J. Phys. Condens. Matter 25(12), 125503 (2013)

    Article  ADS  Google Scholar 

  • Solieman, A., Abu-Sehly, A.A.: Modelling of optical properties of amorphous selenium thin films. Physica B 405(4), 1101–1107 (2010)

    Article  ADS  Google Scholar 

  • Sze, S.M., Li, Y., Ng, K.K.: Physics of Semiconductor Devices. Wiley, New York (2021)

    Google Scholar 

  • Tian, C., Cheng, J., Yang, J.: A highly active cathode material of Cu-doped Sr2Fe1.5Mo0.5O6 for symmetrical solid oxide fuel cells. J. Mater. Sci. Mater. Electron. 32(1), 1258–1264 (2021)

    Article  Google Scholar 

  • Wang, X., Miao, Z., Ma, Y., Chen, H., Qian, H., Zha, Z.: One-pot solution synthesis of shape-controlled copper selenide nanostructures and their potential applications in photocatalysis and photothermal therapy. Nanoscale 9(38), 14512–14519 (2017)

    Article  Google Scholar 

  • Watanabe, A.O., Lin, T.H., Ali, M., Wang, Y., Smet, V., Raj, P.M., Swaminathan, M.: Ultrathin antenna-integrated glass-based millimeter-wave package with through-glass vias. IEEE Trans. Microw. Theory 68(12), 5082–5092 (2020)

    Google Scholar 

  • Yang, D., Bai, H., Su, X., Li, Z., Luo, T., Li, J., Tang, X.: Atomic mechanism of ionic confinement in the thermoelectric Cu2Se based on a low-cost electric-current method. Cell Rep. Phys. Sci. 2(2), 100345 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), Arab American University, Jenin, Palestine and by DSR of Istinye University, Istanbul, Turkey. The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Funding

This study was funded by the Deanship of Scientific Research (DSR), Arab American University, Jenin, Palestine and by Istinye University, Istanbul, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Qasrawi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasrawi, A.F., Ghannam, A.N.A. Effect of lanthanum substrates on the structural, optical and electrical properties of copper selenide thin films designed for 5G technologies. Opt Quant Electron 54, 4 (2022). https://doi.org/10.1007/s11082-021-03375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03375-z

Keywords

Navigation