Skip to main content
Log in

Influence of non-uniform magnetic field on magnetic susceptibility, heat capacity, electronic and optical properties of a charged particle

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the work, a charged particle under influence of non-uniform external magnetic field has been considered. First, the Schrödinger equation is solved by emplying the Nikiforov–Uvarov (NU) method and derived analytically the energy states and wave functions. Then, we have studied magnetic susceptibility, heat capacity, electronic and optical properties of the system. It is found that energy levels, optical properties, heat capacity and magnetic susceptibility depend strongly on the effect of non-uniform magnetic field. With changing the non-uniform magnetic field, the system can be shown diamagnetic or paramagnetic behavior. The heat capacity displays the peak structure under effect of non-uniform magnetic field. The refractive index change and absorption coefficient increase and their peaks shift toward higher energies under non-uniform magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aminfar, H., Mohammadpourfard, M., Narmani Kahnamouei, Y.: A 3D numerical simulation of mixed convection of a magnetic nanofluid in the presence of non-uniform magnetic field in a vertical tube using two phase mixture model. J. Magn. Magn. Mater. 323, 1963–1972 (2011)

    Article  ADS  Google Scholar 

  • Avdelas, G., Konguetsof, A., Simos, T.E.: A generalization of Numerov’s method for the numerical solution of the Schrödinger equation in two dimension. Comput. Chem. 24, 577–584 (2000)

    Article  MATH  Google Scholar 

  • Baura, A., Kumar Sen, M., Chandra Bag, B.: Effect of non Markovian dynamics of a charged particle in presence of a magnetic field. Chem. Phys. 417, 30–36 (2013)

    Article  Google Scholar 

  • Bera, A., Ghosh, A., Arif, S.M., Ghosh, M.: Transition kinetics of impurity doped quantum dots under time-varying magnetic field: role of noise. Superlatt. Microstruct. 143, 106554–106559 (2020)

    Article  Google Scholar 

  • Berkdemir, A., Berkdemir, C., Sever, R.: Polynomial solution of the Schrödinger equation for the generalized Woods-Saxon potential. Phys. Rev. C 72, 027001–027009 (2004)

    Article  MATH  ADS  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics, 2nd edn, Academic Press (2003)

  • Buyukkilic, F., Egrifes, H., Demirhan, D.: Solution of the Schrödinger equation for two different molecular potentials by the Nikiforov–Uvarov method. Theor. Chem. Acc. 98, 192–196 (1997)

    MATH  Google Scholar 

  • Chan, P.K., Oikawa, S.I., Kosaka, W.: Quantum mechanical expansion of variance of a particle in a weakly non-uniform electric and magnetic field. Phys. Plasmas 23, 082114–082120 (2016)

    Article  ADS  Google Scholar 

  • Chu, Y.M., Moradi, R., Abazari, A.M.: Computational investigation of non-uniform magnetic field on thermal characteristic of nanofluid stream inside 1800–1800 elbow pipe. Mod. Phys. Lett. B 35, 2150157–2215063 (2021)

    Article  ADS  Google Scholar 

  • Costi, T.A.: Magnetic field dependence of the thermopower of Kondo-correlated quantum dots. Phys. Rev. B 100, 161106–161110 (2019)

    Article  ADS  Google Scholar 

  • Dateo, C.E., Engel, V., Almeida, R., Metiu, H.: Numerical solutions of time-dependent Schrödinger equation in spherical coordinates by Fourier transform methods. Comput. Phys. Commun. 63, 435–445 (1991)

    Article  MATH  ADS  Google Scholar 

  • Dehghan, M., Taleei, A.: Numer, Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method. Methods Partial Differ. Equ. 26, 979–992 (2010)

    Article  MATH  Google Scholar 

  • Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Van Gorder, R.A.: Jacobi–-Gauss–-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations. J. Comput. Phys 261, 244–255 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Duan, Y., Rong, F.: A numerical scheme for nonlinear Schrödinger equation by MQ quasi-interpolation. Eng. Anal. Bound. Elem. 37, 89–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Eshghi, M., Mehraban, H.: Effective of the q-deformed pseudoscalar magnetic field on the charge carriers in graphene. J. Math. Phys. 57, 082105–082110 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Eshghi, M., Mehraban, H.: Study of a 2D charged particle confined by a magnetic and AB flux fields under the radial scalar power potential. Eur. Phys. J. plus 132, 121–129 (2017)

    Article  Google Scholar 

  • Eshghi, M., Mehraban, H., Ikhdair, S.M.: Relativistic Killingbeck energy states under external magnetic fields. Eur. Phys. J. A 52, 201–209 (2016)

    Article  ADS  Google Scholar 

  • Frankenberg, C., Meiring, J.F., Van Weele, M., Platt, U., Wagner, T.: Assessing methane emissions from global space-borne observations. Science 308, 1010–1014 (2005)

    Article  ADS  Google Scholar 

  • Geng, Y.B., Ding, Z.H., Zhao, Y., Sun, Y., Xiao, J.L.: Effect of the anisotropic parabolic potential on the polaron’s properties in asymmetric Gaussian quantum wells. J. Nanophotonics 15, 016001–016009 (2021)

    Article  ADS  Google Scholar 

  • Ghanbari, A., Khordad, R.: Bound states and optical properties for Derjaguin–-Landua–Verwejj–-Overbook potential. Opt. Quant. Electron. 53, 152–160 (2021)

    Article  Google Scholar 

  • Goharkhah, M., Ashjaee, M.: Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel. J. Magn. Magn. Mater 362, 80–89 (2014)

    Article  ADS  Google Scholar 

  • Hassanabadi, H., Hosseini, S.S., Zarrinkamar, S.: Dirac oscillator in noncommutative space. Chin. Phys. C 38, 063104–063110 (2014)

    Article  ADS  Google Scholar 

  • Hosseini, M., Hassanabadi, H., Hassanabadi, S.: Solutions of the Dirac-Weyl equation in geraphene under magnetic fields in the Cartesian coordinate system. Eur. Phys. J. plus 134, 6–12 (2019)

    Article  Google Scholar 

  • Ikhdair, S.M.: Approximate solutions of the Dirac equation for the Rosen-Morse potential including the spin-orbit centrifugal term. J. Math. Phys. 51, 023525–023531 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Javidi, M., Golbabai, A.: Numerical studies on nonlinear Schrödinger equations by spectral collocation method with preconditioning. J. Math. Anal. Appl. 333, 1119–1127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalogiratou, Z., Monovasilis, T., Simos, T.E.: Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type method. J. Math. Chem. 37(3), 271–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, C.S., Olendski, O.: Landua levels and persistent currents in non-uniform magnetic fields. Phys. Rev. B 53, 12917–12922 (1996)

    Article  ADS  Google Scholar 

  • Kryuchkov, S.V., Kukhar, E.I.: Effect of high-frequency electric field on the electron magneto-transport in geraphene. Physica B 445, 93–101 (2014)

    Article  ADS  Google Scholar 

  • Le, D.N., Le, V.H., Roy, P.: Conditional electron confinement in graphene via smooth magnetic fields. Physica E 96, 17–22 (2018)

    Article  ADS  Google Scholar 

  • Mousavi, S.M., Farhadi, M., Sedighi, K.: Effect of non-uniform magnetic field on biomagnetic fluid flow in 3D channel. Appl. Math. Model. 40, 7336–7348 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Mousavi, S.M., Biglarian, M., Rabienataj Darzi, A.A., Farhadi, M., Afrouzi, H.H., Toghraie, D.: Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field. J. Therm. Anal. Calorim. 139, 3331–3343 (2020)

    Article  Google Scholar 

  • Nimmagadda, R., Haustein, H.D., Asirvatham, L.G., Wongwises, S.: Effect of uniform/non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids. J. Magn. Magn. Mater 479, 268–281 (2019)

    Article  ADS  Google Scholar 

  • Portacio, A.A., Rodriguez, B.A., Villamil, P.: Non-linear optical response of an impurity in a cylindrical quantum dot under the action of a magnetic field. Physica B 511, 68–73 (2017)

    Article  ADS  Google Scholar 

  • Rastegar Sedehi, H.R., Arda, A., Sever, R.: Thermodynamic properties of a charged particle in non-uniform magnetic field. Opt. Quant. Electron. 53, 142–151 (2021a)

    Article  Google Scholar 

  • Rastegar Sedehi, H.R., Khordad, R., Bahramiyan, H.: Optical properties and diamagnetic susceptibility of a hexagonal quantum dot: impurity effect. Opt. Quant. Electron. 53, 264–271 (2021b)

    Article  Google Scholar 

  • Repko, J.M., Repko, W.W., Saaf, A.: Charged particle trajectories in simple non-uniform magnetic fields. Am. J. Phys. 59, 652–659 (1991)

    Article  ADS  Google Scholar 

  • Sakaguchi, H., Higashiuchi, T.: Two-dimensional dark solitons in the nonlinear Schrödinger equation. Phys. Lett. A 359, 647–651 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Salehi, M., Granpayeh, N.: Numerical solution of the Schrödinger equation in polar coordinates using the finite difference time domain method. J. Comput. Electron. 19, 91–102 (2020)

    Article  Google Scholar 

  • Sezgo, G.: Orthogonal Polynomials, American Mathematical Society, New York (1939)

  • Singh, U.B., Singh, D., Kumar, S., Dhar, R., Pandey, M.B.: The optical properties of quantum dots in anisotropic media. J. Mol. Liq. 241, 1009–1012 (2017)

    Article  Google Scholar 

  • Sudiarta, I.W., Geldart, D.J.W.: Solving the Schrödinger equation for a charged particle in a magnetic field using the finite difference time domain method. Phys. Lett. A 372, 3145–3148 (2008)

    Article  MATH  ADS  Google Scholar 

  • Suksawat, N., Wongrach, K., Pinchaipat, R.: The effect of non-uniform magnetic field on the energy spread of a low energy electron beam. J. Phys. Conf. Ser. 1719, 012048–112044 (2020)

    Article  Google Scholar 

  • Sun, Y., Xiao, J.L.: Qubit coherence effects in a RbCl quantum well with asymmetric Gaussian confinement potential and applied electric field. Eur. Phys. J. plus 135, 592–599 (2020)

    Article  Google Scholar 

  • Xiao, J.L.: The effects of hydrogen-like impurity and temperature on state energies and transition frequency of strong-coupling bound Polaron in an asymmetric Gaussian potential quantum well. J. Low Temp. Phys. 192, 41–47 (2018)

    Article  ADS  Google Scholar 

  • Xiao, R.H., Guo, Z.Y., Fang, J.X.: Thermal and non-uniform magnetic quantum discord in the two qubit Heisenberg XXZ model. Mod. Phys. Lett. B 26, 1150028–1150035 (2012)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R., Sedehi, H.R.R. & Ghanbari, A. Influence of non-uniform magnetic field on magnetic susceptibility, heat capacity, electronic and optical properties of a charged particle. Opt Quant Electron 53, 630 (2021). https://doi.org/10.1007/s11082-021-03298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03298-9

Keywords

Navigation