Skip to main content
Log in

First principles study in the electronic structures and optical properties of chalcogenide-doped AgInS2

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA + U) is adopted to simulate the electronic structures and optical properties of AgInS2 semiconductors with S substitution by chalcogenides. AgIn(S, O)2 semiconductor can be synthesized at the normal conditions due to the formation energy. All chalcogenides doping in AgInS2 remain the semiconductor with the narrow band gaps. In the presence of the impurities, the contributions from p states of chalcogenides are involved, accountable for the reduction of the band gaps. Using the reflectivity and absorption coefficients, the optical properties with extensive absorption range and low reflectivity are attained by incorporating AgInS2 semiconductors with chalcogenides. Finally, this theoretical work launches a broader understanding of the absorber materials and also predicts the natural properties as the alternative for the solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera, M.L.A., Aguilar Hernández, J.R., González Trujillo, M.A., Ortega Lopez, M.: Photoluminescence studies of p-type chalcopyrite AgInS2:Sn. Solar Energy Mater. Solar Cells 91, 1483–1487 (2007)

    Article  Google Scholar 

  • Aguilera, M.L.A., Ramírez-Rosales, D., González-Trujillo, M.A.: Change from n-type to p-type conductivity on AgInS2 and AgInS2: Sn polycrystalline thin films prepared by spray pyrolysis technique. Thin Solid Films 517, 2535–2537 (2009)

    Article  ADS  Google Scholar 

  • Arredondo, C.A., Clavijo, J., Gordillo, G.: Investigation of AgInS2 thin films grown by coevaporation. J. Phys. Conf. Ser. 167, 012050–012054 (2009)

    Article  Google Scholar 

  • Broyden, C.G.: The convergence of a class of double-rank minimization algorithms 1. General considerations. J. Inst. Math. Appl. 6, 76–90 (1970)

    Article  Google Scholar 

  • Cai, Q., Liu, Z., Li, J., Han, C., Tong, Z.: Ga-doped AgInS2 modified with Co–Pi Co–catalyst for efficient photoelectrochemical water splitting. Catal. Lett. 150, 1089–1097 (2020)

    Article  Google Scholar 

  • Chen, S., Demillo, V., Lu, M., Zhu, X.: Preparation of photoluminescence tunable Cu-doped AgInS2 and AgInS2/ZnS nanocrystals and their application as cellular imaging probes. RSC Adv. 6, 51161–51170 (2016)

    Article  ADS  Google Scholar 

  • Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220(5–6), 567–570 (2005)

    Article  Google Scholar 

  • Delgado, G., Mora, A.J., Pineda, C., Tinoco, T.: Simultaneous Rietveld refinement of three phases in the Ag-In-S semiconducting system from X-ray powder diffraction. Mater. Res. Bull. 36, 2507–2517 (2001)

    Article  Google Scholar 

  • Deng, M., Shen, S., Wang, X., Zhang, Y., Xu, H., Zhang, T., Wang, Q.: Controlled synthesis of AgInS2 nanocrystals and their application in organic–inorganic hybrid photodetectors. Cryst. Eng. Commun. 15, 6443–6447 (2013)

    Article  Google Scholar 

  • Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13, 317–322 (1970)

    Article  Google Scholar 

  • Gherouel, D., Gaied, I., Amlouk, M.: Effect of heat treatment in air on physical properties of AgInS2 sprayed thin films. J. Alloys Compd. 566, 147–155 (2013)

    Article  Google Scholar 

  • Goldfarb, D.: A family of variable-metric methods derived by variational means. Math. Comput. 24, 23–26 (1970)

    Article  MathSciNet  Google Scholar 

  • Hamanaka, Y., Ogawa, T., Tsuzuki, M., Kuzuya, T.: Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J. Phys. Chem. C 115, 1786–1792 (2011)

    Article  Google Scholar 

  • Han, J., Liu, Z., Guo, K., Ya, J., Zhao, Y., Zhang, X., Hong, T., Liu, J.: High-efficiency AgInS2-modified ZnO nanotube array photoelectrodes for all-solid-state hybrid solar cells. ACS Appl. Mater. Interfaces 6, 17119–17125 (2014)

    Article  Google Scholar 

  • Huang, D., Persson, C.: Photocatalyst AgInS2 for active overall water-splitting: a first-principles study. Chem. Phys. Lett. 591, 189–192 (2014)

    Article  ADS  Google Scholar 

  • Jaffe, J.E., Zunger, A.: Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys. Rev. B 29, 1882–1906 (1984)

    Article  ADS  Google Scholar 

  • Jayalakshmi, V., Davapriya, S., Murugan, R., Palanivel, B.: Electronic structure and structural phase stability of CuAlX2 (X=S, Se, Te) under pressure. J. Phys. Chem. Solids 67, 669–674 (2006)

    Article  ADS  Google Scholar 

  • Kadlag, K.P., Rao, M.J., Nag, A.: Ligand-free, colloidal, and luminescent metal sulfide nanocrystals. J. Phys. Chem. Lett. 4, 1676–1681 (2013)

    Article  Google Scholar 

  • Krustok, J., Raudoja, J., Krunks, M., Mandar, H., Collan, H.: Nature of the native deep localized defect recombination centers in the chalcopyrite and orthorhombic AgInS2. J. Appl. Phys. 88, 205–209 (2000)

    Article  ADS  Google Scholar 

  • Liu, J., Chen, S., Liu, Q., Zhu, Y., Lu, Y.: Density functional theory study on electronic and photocatalytic properties of orthorhombic AgInS2. Comput. Mater. Sci. 91, 159–164 (2014)

    Article  Google Scholar 

  • Nguimdo, G.M.D., Joubert, D.P.: A density functional (PBE, PBEsol, HSE06) study of the structural, electronic and optical properties of the ternary compounds AgAlX2 (X = S, Se, Te). Eur. Phys. J. B 88, 113–122 (2015)

    Article  ADS  Google Scholar 

  • Perdew, J.P., Ernzerhof, K., Burke, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  ADS  Google Scholar 

  • Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14(11), 2717–2744 (2002)

    Article  ADS  Google Scholar 

  • Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24, 647–656 (1970)

    Article  MathSciNet  Google Scholar 

  • Sharma, S., Verma, A.S., Jindal, V.K.: First principles studies of structural, electronic, optical, elastic and thermal properties of Ag-chalcopyrites (AgInX2: X=S, Se). Phys. B 438, 97–108 (2014)

    Article  ADS  Google Scholar 

  • Tang, X., Bernice, W., Ho, A., Xue, J.M.: Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties. J. Phys. Chem. C 116, 9769–9773 (2012a)

    Article  Google Scholar 

  • Tang, X., Ho, W.B.A., Xue, J.M.: Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties. J. Phys. Chem. C 116, 9769–9773 (2012b)

    Article  Google Scholar 

  • Torimoto, T., Adachi, T., Okazaki, K., Sakuraoka, M., Shibayama, T., Ohtani, B., Kudo, A., Kuwabata, S.: Facile synthesis of ZnS–AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J. Am. Chem. Soc. 129, 12388–12389 (2007)

    Article  Google Scholar 

  • Torimoto, T., Tada, M., Dai, M., Kameyama, T., Suzuki, S., Kuwabata, S.: Tunable photoelectrochemical properties of chalcopyrite AgInS2 nanoparticles size-controlled with a photoetching technique. J. Phys. Chem. C 116, 21895–21902 (2012)

    Article  Google Scholar 

  • Vaipolin, A.A., Rud, Y.V., Rozhdestvenskaya, I.V.: Interatomic interaction aspect of phase transition in AgInS2 crystals. Cryst. Res. Technol. 23, 337–341 (1988)

    Article  Google Scholar 

  • Verma, A.S., Bhardwaj, S.R.: Correlation between ionic charge and the mechanical properties of complex structured solids. J. Phys. Condens. Matter 19, 026213–026219 (2007)

    Article  ADS  Google Scholar 

  • Yin, J., Lu, X., Dong, Q.: First principles study the luminescence mechanism of wurtzite AgInS2 doped by zinc. Comput. Mater. Sci. 122, 86–91 (2016)

    Article  Google Scholar 

  • Yoshino, K., Komaki, H., Kakeno, T., Akaki, Y., Ikari, T.: Growth and characterization of p-type AgInS2 crystals. J. Phys. Chem. Solids 64, 1839–1842 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support from Department of Physics, Faculty of Science, Ubon Ratchathani University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Worasak Sukkabot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukkabot, W. First principles study in the electronic structures and optical properties of chalcogenide-doped AgInS2. Opt Quant Electron 53, 443 (2021). https://doi.org/10.1007/s11082-021-03115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03115-3

Keywords

Navigation