Skip to main content
Log in

A novel multi-band biomedical sensor for THz regime

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper presents the design and evaluation of a multi-band terahertz (THz) metamaterial-based biomedical (BioMed) sensor for blood component detection such as Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), plasma, water, Red Blood Cells (RBC), White Blood Cells (WBC) and haemoglobin. The proposed THz sensor is a multimode resonator with concentric square loops enclosing concentric octagonal loops. The proposed sensor has a metamaterial feature with a footprint of 0.164λeff × 0.164λeff. The THz sensor operates between 1 and 2 THz with four independently tunable operating bands, viz. 0.33, 0.90, 1.42 and 1.85 THz. The sensitivity of the THz sensor is estimated using the absorption characteristics, and the estimated average absorptivity is 99% for the proposed BioMed sensor. The THz sensor has a rotational symmetry offering both polarization and angular stability (up to 60°). The performance of the sensor is evaluated for different BioMed samples providing unique refractive indices. Furthermore, the impact of sample thickness on the sensor performance has been evaluated and presented. From the results, it is inferred that the proposed THz sensor is suitable for nucleic acids and other components detection in blood samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

No new data generated and hence it is not applicable.

Code availability

(Software application or custom code): The work does not involve computer code.

References

  • Ahmed, K., et al.: Refractive index-based blood components sensing in terahertz spectrum. IEEE Sensors J. 19(9), 3368–3375 (2019)

    Article  ADS  Google Scholar 

  • Al-Naib, I.: BioMedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J. Sel. Top. Quantum Electron. 23(4), 1–5 (2017)

    Article  Google Scholar 

  • Ansari, M.A.H., Jha, A.K., Akhter, Z., Akhtar, M.J.: Multi-band RF planar sensor using complementary split ring resonator for testing of dielectric materials. IEEE Sensors J. 18(16), 6596–6606 (2018)

    Article  ADS  Google Scholar 

  • Butler, L., Wilbert, D.S., Baughman, W., Balci, S., Kung, P., Kim, S.M.: Design, simulation, and characterization of THz metamaterial absorber. In: 2011 International Semiconductor Device Research Symposium (ISDRS), College Park, MD, pp. 1–2 (2011).

  • CST Studio Suite Inc., www.3ds.com

  • Di. Primo, C., Lebars, I.: Determination of refractive index increment ratios for protein-nucleic acid complexes by surface plasmon resonance. Anal. Biochem. 368(2), 148–155 (2007)

    Article  Google Scholar 

  • Elakkiya, A., Radha, S., Manikandan, E., Sreeja, B.S.: Design and numerical analysis of tri-band terahertz metamaterial. In: 2019 IEEE Region 10 Conference, Kochi, India, 2019, pp. 1922–1925.

  • Emami Nejad, H., Mir, A., Farmani, A.: Supersensitive and tunable nano-biosensor for cancer detection. IEEE Sensors J. 19(13), 4874–4881 (2019)

    Article  ADS  Google Scholar 

  • He, S., Chen, T.: Broadband THz absorbers with graphene-based anisotropic metamaterial films. IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013)

    Article  ADS  Google Scholar 

  • Hu, D., Wang, H., Tang, Z., et al.: Design of four-band terahertz perfect absorber based on a simple #-shaped metamaterial resonator. Appl. Phys. A 122, 826 (2016)

    Article  ADS  Google Scholar 

  • Islam, M.S., et al.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sensors J. 18(2), 575–582 (2018)

    Article  ADS  Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  • Landy, N.I., Bingham, C.M., Tyler, T., Jokerst, N., Smith, D.R., Padilla, W.J.: Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B. 79 (2009).

  • MacPherson, E., Gallerano, G.P., Park, G.-S., Hintzsche, H., Wilmink, G.J.: Guest editorial: terahertz imaging and spectroscopy for biology and BioMedicine. IEEE J. Biomed. Health Inform. 17(4), 765–767 (2013)

    Article  Google Scholar 

  • Nagel, M., Richter, F., Bolivar, P.H., Kurz, H., Bosserhoff, A., Buttner, R.: Integrated THz biomolecular sensors for DNA. In: Proceedings, IEEE 10th International Conference on Terahertz Electronics, Cambridge, UK, pp. 70–73 (2002).

  • Nejat, M., Nozhat, N.: Ultrasensitive THz refractive index sensor based on a controllable perfect MTM absorber. IEEE Sensors J. 19(22), 10490–10497 (2019)

    Article  ADS  Google Scholar 

  • Nejat, M., Nozhat, N.: Multi-band MIM refractive index biosensor based on Ag-air grating with equivalent circuit and T-matrix methods in the near-infrared region. Sci. Rep. 10, 6357 (2020)

    Article  ADS  Google Scholar 

  • Saadeldin, A.S., Hameed, M.F.O., Elkaramany, E.M.A., Obayya, S.S.A.: Highly sensitive terahertz metamaterial sensor. IEEE Sensors J. 19(18), 7993–7999 (2019). https://doi.org/10.1109/JSEN.2019.2918214

    Article  Google Scholar 

  • Sanphuang, V., Yeo, W., Volakis, J.L., Nahar, N.K.: THz transparent metamaterials for enhanced spectroscopic and imaging measurements. IEEE Trans. Terahertz Sci. Technol. 5(1), 117–123 (2015)

    Google Scholar 

  • Sharma, P., Sharan, P.: Design of photonic crystal based ring resonator for detection of different blood constituents. Opt. Commun. 348(08), 19–23 (2015)

    Article  ADS  Google Scholar 

  • Shi, C., et al.: Compact broadband terahertz perfect absorber based on multi-interference and diffraction effects. IEEE Trans. Terahertz Sci. Technol. 6(1), 40–44 (2016)

    Article  ADS  Google Scholar 

  • Tao, H., et al.: Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Phys. Rev. B 78, 241103 (2008)

    Article  ADS  Google Scholar 

  • Wang, G., Wang, B.: Five-band terahertz metamaterial absorber based on a four-gap comb resonator. J. Lightw. Technol. 33(24), 5151–5156 (2015)

    Article  ADS  Google Scholar 

  • Wang, B., Wang, G.: Quad-band terahertz absorber based on a simple design of metamaterial resonator. IEEE Photon. J. 8(6), 1–8 (2016)

    Google Scholar 

  • Wang, B., Wang, G., Zhai, X., Wang, L.: Polarization tunable terahertz metamaterial absorber. IEEE Photon. J. 7(4), 1–7 (2015)

    Google Scholar 

  • Wang, B., Wang, G., Wang, L., Zhai, X.: Design of a five-band terahertz absorber based on three nested split-ring resonators. IEEE Photo. Technol. Lett. 28(3), 307–310 (2016)

    Article  ADS  Google Scholar 

  • Wang, B., Xie, Q., Dong, G., Huang, W.: Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber. IEEE Photon. Technol. Lett. 30(12), 1115–1118 (2018)

    Article  ADS  Google Scholar 

  • Wang, Z., et al.: Characterization of thin metal films using terahertz spectroscopy. IEEE Trans. Terahertz Sci. Technol. 8(2), 161–164 (2018)

    Article  ADS  Google Scholar 

  • Wilbert, D.S., Hokmabadi, M.P., Kung, P., Kim, S.M.: Equivalent-circuit interpretation of the polarization insensitive performance of THz metamaterial absorbers. IEEE Trans. Terahertz Sci. Technol. 3(6), 846–850 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

This project did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulam Nabi Alsath Mohammed.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest/competing interests.

Ethical approval

No human or animal subject is involved in the study. Hence not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veeraselvam, A., Mohammed, G.N., Savarimuthu, K. et al. A novel multi-band biomedical sensor for THz regime. Opt Quant Electron 53, 354 (2021). https://doi.org/10.1007/s11082-021-03024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03024-5

Keywords

Navigation