Skip to main content
Log in

DbOBS: dual buffered switch for variable optical bursts in future datacenters

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Modern data-driven applications pose stringent requirements of high bandwidth, ultra-low-latency, low-powered, and scalable interconnections among switches and routers in data-centers. To address these demands, electronic switching is not a viable choice due to bandwidth and computing bottlenecks. Thus, researchers explored effective optical switch design principles for next-generation data-centers. In optical switches, data aggregates in the form of optical bursts (OB) at ultra-high speeds. In the case of OB contention, solutions are proposed by researchers to store OB as recirculating patterns in fiber delay lines (FDL) with induced optical delay. However, due to variable burst length, it is not possible to measure slot delay length, thus storage of contending bursts is not possible at intermediate core switches. Motivated from the aforementioned discussions, in this paper, we propose a switch design DbOBS, that is capable to store variable OB during contention slots. DbOBS estimates mean burst length, and possible deviation from mean length to minimize burst loss. The considered switch design is validated through parameters like-burst length estimation, over-reservation, and waiting time. For network-layer simulations, poison arrivals of data bursts are considered as packetized units. The packets are sent through Monte-Carlo arrivals and burst loss probability (BLP) is estimated at various input load conditions and buffer sizes. DbOBS achieves a BLP in order of \(10^{-4}\) at load \(\approx\) 0.8, and buffer-size of 50, and burst length of \(L=5\), that outperforms the traditional switch designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

Yes. Available upon request

References

  • Basha, M.A., Dechev, N., Safavi-Naeini, S., Chaudhuri, S.K.: A scalable \(1\times n\) optical mems switch architecture utilizing a microassembled rotating micromirror. IEEE J. Sel. Top. Quant. Electron. 13(2), 336–347 (2007)

    Article  ADS  Google Scholar 

  • Bhattacharya P., Tiwari A.K., Ladha A., Tanwar S. A Proposed Buffer Based Load Balanced Optical Switch with AO-NACK Scheme in Modern Optical Datacenters. In: Singh P., Panigrahi B., Suryadevara N., Sharma S., Singh A. (eds) Proceedings of ICETIT 2019. Lecture Notes in Electrical Engineering, vol 605. Springer, Cham. https://doi.org/10.1007/978-3-030-30577-2_8 (2020)

  • Bhattacharya, P., Tiwari, A.K., Srivastava, R.: Dual buffers optical based packet switch incorporating arrayed waveguide gratings. J. Eng. Res. 7(1), 1–15 (2019)

    Google Scholar 

  • Srivastava, R. Bhattacharya, P., and  Tiwari, A.K.: Optical Data Centers Router Design with Fiber Delay Lines and Negative Acknowledgement. J. Eng. Res. 8(2), (2020)

  • Chandra, S., Fatima, S., Suryavanshi, R.S.: Hybrid buffer-based optical packet switch with negative acknowledgment for multilevel data centers. J. Opt. Commun. https://doi.org/10.1515/joc-2020-0060 (2020) (Ahead-of-Print)

  • Di Lucente, S., Pueyo Centelles, R., Dorren, H.J.S., Calabretta, N.: Study of the performance of an optical packet switch architecture with highly distributed control in a data center environment. In: 2012 16th International Conference on optical network design and modelling (ONDM), Colchester, UK, pp. 1–6 (2012)

  • Forencich, A., Kamchevska, V., Dupuis, N., Lee, B.G., Baks, C.W., Papen, G., Schares, L.: A dynamically-reconfigurable burst-mode link using a nanosecond photonic switch. J. Lightwave Technol. 38(6), 1330–1340 (2020)

    Article  ADS  Google Scholar 

  • Jain, A., Shukla, V.: Design of arrayed waveguide grating based optical switch for high speed optical networks. Int. J. Eng. 29(7), 909–915 (2016)

    Google Scholar 

  • Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009). https://doi.org/10.1109/MCOM.2009.5307468

    Article  Google Scholar 

  • Kachris, C., Tomkos, I.: A survey on optical interconnects for data centers. IEEE Commun. Surv. Tutor. 14(4), 1021–1036 (2012)

    Article  Google Scholar 

  • Li, C.Y., Wai, P.K.A.: A hybrid optical buffer. In: OFC/NFOEC 2008 - 2008 Conference on optical fiber communication/national fiber optic engineers conference, San Diego, CA, USA, pp. 1–3 (2008)

  • Miao, W., Yin, X., Bauwelinck, J., Dorren, H., Calabretta, N.: Performance assessment of optical packet switching system with burst-mode receivers for intra-data center networks. In: 2014 The European Conference on Optical Communication (ECOC), Cannes, France, pp. 1–3 (2014)

  • Nigam, A., Mishra, B. , Patel, P.: Recirculating Buffer and Arrayed Waveguide Grating-Based Switch for Optical Data Centers Journal of Optical Communications, 42(2), 217–223 (2021).

  • Proietti, R., Yin, Y., Yu, R., Ye, X., Nitta, C., Akella, V., Yoo, S.J.B.: All-optical physical layer nack in awgr-based optical interconnects. IEEE Photon. Technol. Lett. 24(5), 410–412 (2012)

    Article  ADS  Google Scholar 

  • Rastegarfar, H., Rusch, L.A., Leon-Garcia, A.: Optical load-balancing tradeoffs in wavelength-routing cloud data centers. IEEE/OSA J. Opt. Commun. Netw. 7(4), 286–300 (2015)

    Article  Google Scholar 

  • Samoud, W., Ware, C., Lourdiane, M.: Performance analysis of a hybrid opto-electronic packet switch using wdm technology. In: 2015 International Conference on photonics in switching (PS), Florence, Italy, pp. 348–350 (2015)

  • Shukla, V., Jain, A., Srivastava, R.: Performance evaluation of an awg based optical router. Opt. Quantum Electron. 48(1), 1–16 (2016)

    Article  Google Scholar 

  • Shukla, V., Singh, O.P., Khare, M., Sharma, S., Srivastava, R.: Estimation of burst length in optical burst switching networks based on early release of control packet. J. Eng. Res. 6(1) (2018)

  • Shukla, V., Sonkar, R.K., Srivastava, R.: Performance comparison between recirculating loop buffer-based optical packet switch architectures. Indian J Phys 94, 1085–1096 (2020)

  • Singh, A., Singh, R., Bhattacharya, P., Pathak, V.K., Tiwari, A.K.: Modern optical data centers: design challenges and issues. In: Giri, V.K., Verma, N.K., Patel, R.K., Singh, V.P. (eds.) Computing Algorithms with Applications in Engineering, pp. 37–50. Springer Singapore, Singapore (2020)

    Chapter  Google Scholar 

  • Singh, A., Tiwari, A.K.: Analysis of Hybrid Buffer Based Optical Data Center Switch" Journal of Optical Communications, https://doi.org/10.1515/joc-2018-0121 (2018) (ahead-of-print)

  • Singh, A, Tiwari, A.K., Bhattacharya, P.: Bit Error Rate Analysis of Hybrid Buffer-Based Switch for Optical Data Centers. Journal of Optical Communications, https://doi.org/10.1515/joc-2019-0008 (2019) (ahead-of-print)

  • Singh, A., Tiwari, A.K., Srivastava, R.: Design and analysis of hybrid optical and electronic buffer based optical packet switch. Sādhanā 43(2), 1–10 (2018)

    Article  MathSciNet  Google Scholar 

  • Srivastava, R., Singh, R.K., Singh, Y.N.: Design analysis of optical loop memory. J. Lightwave Technol. 27(21), 4821–4831 (2009)

    Article  ADS  Google Scholar 

  • Srivastava, R., Singh, Y.N.: Feedback fiber delay lines and awg based optical packet switch architecture. Opt. Switch. Netw. 7(2), 75–84 (2010)

    Article  Google Scholar 

  • Srivastava, R., Singh, Y.N.: Fiber optic loop buffer switch incorporating 3r regeneration. Opt. Quantum Electron. 42(5), 297–311 (2011)

    Article  Google Scholar 

  • Vahdat, A., Liu, H., Xiaoxue Zhao, Johnson, C.: The emerging optical data center. In: 2011 Optical fiber communication conference and exposition and the national fiber optic engineers conference, pp. 1–3 (2011)

  • Wang, G., Andersen, D.G., Kaminsky, M., Papagiannaki, K., Ng, T.E., Kozuch, M., Ryan, M.: C-through: part-time optics in data centers. SIGCOMM Comput. Commun. Rev. 40(4), 327–338 (2010). https://doi.org/10.1145/1851275.1851222

    Article  Google Scholar 

  • Wang, J., Mcardle, C., Barry, L.P.: Optical packet switch with energy-efficient hybrid optical/electronic buffering for data center and hpc networks. Photon. Netw. Commun. 32(1), 89–103 (2016). https://doi.org/10.1007/s11107-015-0578-z

    Article  Google Scholar 

  • Wu, G., Gu, H., Wang, K., Yu, X., Guo, Y.: A scalable awg-based data center network for cloud computing. Opt. Switch. Netw. 16, 46–51 (2015)

    Article  Google Scholar 

  • Xi, K., Kao, Y.H., Chao, H.J.: A Petabit Bufferless Optical Switch for Data Center Networks, pp. 135–154. Springer, New York (2013)

    Google Scholar 

  • Xiaohui Ye, Mejia, P., Yawei Yin, Proietti, R., Yoo, S.J.B., Akella, V.: Dos - a scalable optical switch for datacenters. In: 2010 ACM/IEEE Symposium on architectures for networking and communications systems (ANCS), La Jolla, CA, USA, pp. 1–12 (2010)

  • Yin, Y., Liu, L., Proietti, R., Yoo, S.J.B.: Software defined elastic optical networks for cloud computing. IEEE Netw. 31(1), 4–10 (2017). https://doi.org/10.1109/MNET.2016.1300091NM

    Article  Google Scholar 

  • Yin, Y., Proietti, R., Ye, X., Nitta, C.J., Akella, V., Yoo, S.J.B.: Lions: An awgr-based low-latency optical switch for high-performance computing and data centers. IEEE J. Sel. Top. Quantum Electron. 19(2), 3600409–3600409 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pronaya Bhattacharya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Ethical approval

Yes

Consent to participate

Yes

Consent for publication

Yes

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, P., Singh, A., Tiwari, A.K. et al. DbOBS: dual buffered switch for variable optical bursts in future datacenters . Opt Quant Electron 53, 235 (2021). https://doi.org/10.1007/s11082-021-02899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02899-8

Keywords

Navigation