Skip to main content
Log in

Enhancement of amplitude-squared squeezing of light with the SU(3) multiport beam splitters

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We study the effect of a tritter, a linear optical circuit of three beam splitters following SU(3) unitary group transformations having three inputs and three output ports, on the ‘Amplitude-Squared Squeezing (ASS)’. We study the variation of ASS with different parameters of the tritter and find that there are a number of conditions where ASS is enhanced at the output of the tritter when we inject light beam exhibiting ASS at one of the input port and light beams in coherent state at another two input ports of the tritter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A. I. Lvovsky, Squeezed light, arXiv:1401.4118 [quant-ph], Chapter 5 in book: Photonics Volume 1: Fundamentals of Photonics and Physics, pp. 121 – 164, Edited by D. Andrews Wiley, West Sussex, United Kingdom

  • Adamyan, H.H., et al.: Strong squeezing in periodically modulated optical parametric oscillators. Phys. Rev. A 92, 053818 (2015)

    Article  ADS  Google Scholar 

  • Andersen, U.L., Gehring, T., Marquardt, C., Leuchs, G.: 30 years of squeezed light generation. Phys. Scr. 91, 053001–053005 (2016)

    Article  ADS  Google Scholar 

  • Azzam, S.I., Shalaev, V.M., Boltasseva, A., Kildishev, A.V.: Formation of bound states in the continuum in hybrid plasmonicphotonic systems. Phys. Rev. Lett. 121, 253901 (2018)

    Article  ADS  Google Scholar 

  • Barsotti, L., Harms, J., Schnabel, R.: Squeezed vacuum states of light for gravitational wave detectors. Rep. Prog. Phys. 82, 016905 (2018)

    Article  ADS  Google Scholar 

  • Bian, C., Zhang, G., Wing Joseph Lee, H.: Squeezing enhancement of degenerate parametric amplifier via coherent feedback control”. Int. J. Control 85(12), 1865–1875 (2012). https://doi.org/10.1080/00207179.2012.706872

    Article  MathSciNet  MATH  Google Scholar 

  • Bulgakov, E.N., Sadreev, A.F.: Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B 78, 075105 (2008)

    Article  ADS  Google Scholar 

  • Byrd, M., Sudarshan, E.C.G.: SU(3) revisited. J. Phys. A- Math. Gen. 31, 9255–9268 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Campos, R.A.: Three-photon Hong-Ou-Mandel interference at a multiport mixer. Phys. Rev. A 62, 013809 (2000)

    Article  ADS  Google Scholar 

  • Carter, S.J., et al.: Squeezing of quantum solitons. Phys. Rev. Lett. 58, 1841 (1987)

    Article  ADS  Google Scholar 

  • Dodonov, V.V.: Non-classical states in quantum optics: ‘squeezed’ review of the first 75 years. J. Opt. B 4, R1 (2002)

    Article  ADS  Google Scholar 

  • Eberle, T., Steinlechner, S., Bauchrowitz, J., Händchen, V., Vahlbruch, H., Mehmet, M., Müller-Ebhardt, H., Schnabel, R.: Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102–4 (2010)

    Article  ADS  Google Scholar 

  • Glorieux, Q., Dubessy, R., Guibal, S., Guidoni, L., Likforman, J.-P., Coudreau, T., Arimondo, E.: Double-Λ microscopic model for entangled light generation by four-wave mixing. Phys. Rev. A 82, 033819 (2010)

    Article  ADS  Google Scholar 

  • Gough, J.E., Wildfeuer, S.: Enhancement of field squeezing using coherent feedback. Phys. Rev. A 80, 042107 (2009)

    Article  ADS  Google Scholar 

  • Howell, J.C., Yeazell, J.A.: Quantum computation through entangling single photons in multipath interferometers. Phys. Rev. Lett. 85, 198–201 (2000)

    Article  ADS  Google Scholar 

  • Händchen, V., Eberle, T., Steinlechner, S., Samblowski, A., Franz, T., Werner, R.F., Schnabel, R.: Observation of one-way Einstein–Podolsky–Rosen steering. Nat. Photon. 6, 596–599 (2012)

    Article  ADS  Google Scholar 

  • Iida, S., Yukawa, M., Yonezawa, H., Yamamoto, N., Furusawa, A.: Experimental demonstration of coherent feedback control on optical field squeezing. IEEE Trans. on Autom. Control 57(8), 2045–2050 (2012)

    Article  Google Scholar 

  • Jie, L., Gang, L., Stefano, Z., Vitali, D., Zhang, T.: Enhanced entanglement of two different mechanical resonators via coherent feedback. Phys. Rev. A 95, 043819 (2017)

    Article  ADS  Google Scholar 

  • Knyazev, E., Spasibko, K.Y., Chekhova, M.V., Khalili, F.Y.: Quantum tomography enhanced through parametric amplification. New J. Phys. 20, 013005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Kodigala, A., Lepetit, T., Gu, Q., Bahari, B., Fainman, Y., Kanté, B.: Lasing action from photonic bound states in continuum. Nature 541, 196 (2017)

    Article  ADS  Google Scholar 

  • Koshelev, K., Lepeshov, S., Liu, M.K., Bogdanov, A., Kivshar, Y.: Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018)

    Article  ADS  Google Scholar 

  • Kowalevicz, A.M., et al.: Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. Opt. Lett. 30, 1060–1062 (2005)

    Article  ADS  Google Scholar 

  • Lee, R.K., Lai, Y.: Quantum squeezing and correlation of self-induced transparency solitons. Phys. Rev. A 80, 033839 (2009)

    Article  ADS  Google Scholar 

  • Lvovsky, A.I., Raymer, M.G.: Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299–332 (2009)

    Article  ADS  Google Scholar 

  • Marinica, D.C., Borisov, A.G., Shabanov, S.V.: Bound states in the continuum in photonics. Phys. Rev. Lett. 100, 183902 (2008)

    Article  ADS  Google Scholar 

  • McCormick, C.F., et al.: Strong low-frequency quantum correlations from a four-wave-mixing amplifier. Phys. Rev. A 78, 043816 (2008)

    Article  ADS  Google Scholar 

  • Meany, T., et al.: Non-classical interference in integrated 3d multiports. Opt. Express 20, 26895–26905 (2012)

    Article  ADS  Google Scholar 

  • Michael, Y., Bello, L., Rosenbluh, M., Pe’er, A.: Squeezing-enhanced Raman spectroscopy. npj Quantum Inf 5(1), 1–9 (2019). https://doi.org/10.1038/s41534-019-0197-0

    Article  Google Scholar 

  • Mishra, D.K.: Possibility of enhancement of Amplitude-squared squeezing in mixing with coherent light beam using a Mach-zehnder interferometer. Acta Phys. Polonica A 112, 859–864 (2007)

    Article  ADS  Google Scholar 

  • Molina, M.I., Miroshnichenko, A.E., Kivshar, Y.S.: Surface bound states in the continuum. Phys. Rev. Lett. 108, 070401 (2012)

    Article  ADS  Google Scholar 

  • Mährlein, Simon, von Zanthier, Joachim, Agarwal, Girish S.: Complete three photon Hong-Ou-Mandel interference at a three port device. Opt. Expr 23(12), 15833–15847 (2015)

    Article  ADS  Google Scholar 

  • Nikolett, N., Parkins, S.: Enhanced optical squeezing from a degenerate parametric amplifier via time-delayed coherent feedback. Phys. Rev. A 94, 023809 (2016)

    Article  ADS  Google Scholar 

  • Német, N., Parkins, S.: Enhanced optical squeezing from a degenerate parametric amplifier via time-delayed coherent feedback. Phys. Rev. A 94, 023809 (2016)

    Article  ADS  Google Scholar 

  • Ou, Z.Y., Pereira, S.F., Kimble, H.J., Peng, K.C.: Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992)

    Article  ADS  Google Scholar 

  • Peuntinger, C., Heim, B., Müller, C.R., Gabriel, C., Marquardt, C., Leuchs, G.: Distribution of squeezed states through an atmospheric channel. Phys. Rev. Lett. 113, 060502–7 (2014)

    Article  ADS  Google Scholar 

  • Plotnik, Y., Peleg, O., Dreisow, F., Heinrich, M., Nolte, S., Szameit, A., Segev, M.: Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011)

    Article  ADS  Google Scholar 

  • Prakash, H., Mishra, D.K.: An example of enhancement of a non-classical feature of a light beam by mixing with another classical light beam using a beam splitter. J. Phys. B: At. Mol. Opt. Phys. 38, 665 (2005)

    Article  ADS  Google Scholar 

  • Prakash, H., Mishra, D.K.: Higher order sub-Poissonian photon statistics and their use in detection of Hong and Mandel squeezing and amplitude-squared squeezing. J. Phys. B.: At 39, 2291–2297 (2006)

    Article  ADS  Google Scholar 

  • Prakash, H., Mishra, D.K.: Enhancement and generation of sum squeezing in two-mode light in mixing with coherent light using a beam splitter. Eur. Phys. J. D 45, 363–367 (2007)

    Article  ADS  Google Scholar 

  • Prakash, H., Mishra, D.K.: Influence of a symmetric lossless beam splitter on a non-classical feature of an optical field. Opt. Spectrosc. 103, 145–147 (2007)

    Article  ADS  Google Scholar 

  • Prakash, H., Mishra, D.K.: Higher order sub-Poissonian photon statistics and their use in detection of Hong and Mandel squeezing and amplitude-squared squeezing. J. Phys. B.: At Mol. Opt. Phys. 40, 2531–2532 (2007)

    Article  ADS  Google Scholar 

  • Preliminary version of this work has been reported in the International Conference on Optoelectronics (ICOL-2019) XLIII Symposium of Optical Society of India, 19-22 October 2019, at Instruments Research & Development Establishment (IRDE), Dehradun, India (ICOL-2019 (Proceedings of the International Conference on Optics and Electro-Optics, Dehradun, India, Editors: Singh, K., Gupta, A. K., Khare, S., Dixit, N., Pant, K., ISBN: 978-981-15-9258-4, Springer Proceedings in Physics, Publisher: Springer Singapore, https://doi.org/10.1007/978-981-15-9259-1)

  • Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994)

    Article  ADS  Google Scholar 

  • Slusher, R.E., et al.: Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409 (1985)

    Article  ADS  Google Scholar 

  • Spagnolo, N., et al.: Quantum interferometry with 3-dimensional geometry. Sci. Rep 2, 862 (2012)

    Article  Google Scholar 

  • Spagnolo, N., Vitelli, C., Aparo, L., Mataloni, P., Sciarrino, F., Crespi, A., Ramponi, R., Osellame, R.: Three-photon bosonic coalescence in an integrated tritter. Nat Commun 4, 1606 (2013). https://doi.org/10.1038/ncomms2616

    Article  ADS  Google Scholar 

  • Stassi, R., et al.: Output field-quadrature measurements and squeezing in ultrastrong cavity-QED. New J. Phys. 18, 123005 (2016)

    Article  ADS  Google Scholar 

  • Suzuki, K., Sharma, V., Fujimoto, J.G., Ippen, E.P., Nasu, Y.: Characterization of symmetric [3×3] directional couplers fabricated by direct writing with a femtosecond laser oscillator. Phys. Rev. A 80, 032318 (2009)

    ADS  Google Scholar 

  • Teich, M.C., Saleh, B.E.A.: Squeezed state of light. Quantum Opt. J. Eur. Opt. Soc. Part B 1(2), 153–191 (1989)

    Article  ADS  Google Scholar 

  • The LIGO Scientific Collaboration: A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011)

    Article  Google Scholar 

  • Tichy, M.C., Tiersch, M., de Melo, F., Mintert, F., Buchleitner, A.: Zero-transmission law for multiport beam splitters. Phys. Rev. Lett. 104, 220405 (2010)

    Article  ADS  Google Scholar 

  • Vahlbruch, H., Mehmet, M., Danzmann, K., Schnabel, R.: Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016)

    Article  ADS  Google Scholar 

  • Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  • Weihs, G., Reck, M., Weinfurter, H., Zeilinger, A.: Two-photon interference in optical fiber multiports. Phys. Rev. A 54, 893–897 (1996)

    Article  ADS  Google Scholar 

  • Wu, L.A., Kimble, H.J., Hall, J.L., Wu, H.: Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986)

    Article  ADS  Google Scholar 

  • Xu, Q., et al.: Simultaneous squeezing of coherent fields using coherent population trapping. Laser Phys. 25, 015201 (2015)

    Article  ADS  Google Scholar 

  • Yang, Y., Peng, C., Liang, Y., Li, Z.B., Noda, S.: Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett. 113, 037401 (2014)

    Article  ADS  Google Scholar 

  • Yanqiang, G., Xiaomin, G., Li, P., Shen, H., Zhang, J., Zhang, T.: Enhancing squeezing and nonclassicality of light in Atom-optomechanical systems. Annalen. Der. Phys. 530(10), 1800138 (2018)

    Article  Google Scholar 

  • Zhixin, L., Xiangdong, Z.: Enhanced optical squeezing from quasi-bound states in the continuum and Fano resonances without nonlinearity. New J. Phys. 21, 123050 (2019)

    Article  Google Scholar 

  • Zippilli, S., Giuseppe, G.D., Vitali, D.: Entanglement and squeezing of continuous-wave stationary light. New J. Phys. 17, 043025 (2015)

    Article  ADS  MATH  Google Scholar 

  • Zukowski, M., Zeilinger, A., Horne, M.A.: Realizable higher-dimensional twoparticle entanglements via multiport beam splitters. Phys. Rev. A 55, 2564–2579 (1997)

    Article  ADS  Google Scholar 

Download references

Funding

DY acknowledges financial support from UGC for UGC Research Fellowship. DKM and KKM acknowledges financial support under EMR project from SERB, New Delhi (EMR/2016/001694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Mishra, K.K., Shukla, G. et al. Enhancement of amplitude-squared squeezing of light with the SU(3) multiport beam splitters. Opt Quant Electron 53, 133 (2021). https://doi.org/10.1007/s11082-021-02773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02773-7

Keywords

Navigation