Skip to main content
Log in

A reconfigurable device based on the one-dimensional magnetized plasma photonic crystals nested with the Pell and Thue–Morse sequences

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the properties of a reconfigurable device which realizes the omnidirectional band gaps (OBGs), nonreciprocity (NR) and polarization beam splitting (PBS) based on the one-dimensional (1-D) magnetized plasma photonic crystals (MPPCs) nested with quasi-periodic Pell and Thue–Morse sequences are theoretically investigated by the transfer matrix method (TMM). The obtained results show that the OBGs, the NR region, and the scope of PBS can be notably manipulated by the plasma frequency, plasma cyclotron frequency, incident angle, and the plasma collision frequency. More specifically, the higher plasma frequency is needed for accomplishing the property of OBGs while the better performance of NR can be achieved with a larger incident angle and a higher plasma cyclotron frequency. Also, the lower plasma frequency and higher plasma cyclotron frequency are suitable for the splendid performance of PBS. The augment of the plasma collision frequency is adverse to the properties as mentioned above. Due to the Voigt magneto-optical effect generating from the magnetized plasma layers, the time-reversal symmetry is destroyed which is beneficial for obtaining the properties of NR and PBS. Besides, owing to the nested technology which breaks the spatial symmetry of the structure further, compared with the conventional 1-D single quasi-periodic structures, the proposed nested MPPCs have a preeminent strength in achieving the three functions through modulating the corresponding physical parameters. These findings provide theoretical guidance for the design and application of the multifunctional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aming, A., Chitaree, R.: The design of omnidirectional terahertz mirror and TM mode filter based on one-dimensional photonic crystal: potential for THz communication system. In: International Society for Optics and Photonics (International Conference on Photonics Solutions, 2015), vol. 9659 p. 96590J, (2015). https://doi.org/10.1117/12.2195883

  • Ardakani Abbas, G.: Nonreciprocal electromagnetic wave propagation in one-dimensional ternary magnetized plasma photonic crystals. J. Opt. Soc. Am. B 31(2), 332–339 (2014)

    Article  ADS  Google Scholar 

  • Dal Negro, L., Stolfi, M., Yi, Y., Michel, J., Duan, X., Kimerling, L.C.: Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals. Appl. Phys. Lett. 84(25), 5186–5188 (2004)

    Article  ADS  Google Scholar 

  • Figotin, A., Vitebskiy, I.: Novel nonreciprocal materials based on magnetic photonic crystals. MRS Online Proceeding Library Archive. 834(2), 87–92 (2004)

    Google Scholar 

  • Figotin, A., Vitebsky, I.: Nonreciprocal magnetic photonic crystals. Phys. Rev. E 63(6), 066609 (2001)

    Article  ADS  Google Scholar 

  • Hart, S.D.: External reflection from omnidirectional dielectric mirror fibers. Science 296, 510–513 (2002)

    Article  ADS  Google Scholar 

  • Ibanescu, M.: An all-dielectric coaxial waveguide. Science 289, 415–419 (2000)

    Article  ADS  Google Scholar 

  • Iwai, A., Righetti, F., Wang, B., Sakai, O., Cappelli, M.A.: A tunable double negative device consisting of a plasma array and a negative-permeability metamaterial. Phys. Plasmas 27, 023511 (2020)

    Article  ADS  Google Scholar 

  • Jena, S., Tokas, R.B., Sarkar, P.: Omnidirectional photonic band gap in magnetron sputtered TiO2/SiO2 one dimensional photonic crystal. Thin Solid Films 599, 138–144 (2016)

    Article  ADS  Google Scholar 

  • John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  • Khanikaev, A.B., Steel, M.J.: Nonreciprocal photonic band structure of low-symmetry magnetic photonic crystals. Photon. Nanostruct. Fundam. Appl. 8(2), 125–130 (2010)

    Article  ADS  Google Scholar 

  • Kong, X.K., Liu, S.B., Zhang, H.F.: Omnidirectional photonic band gap of one-dimensional ternary plasma photonic crystals. J. Opt. 13(3), 035101 (2011)

    Article  ADS  Google Scholar 

  • Li, C.Z., Liu, S.B., Kong, X.K.: Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice. Appl. Opt. 50, 2370–2375 (2011)

    Article  ADS  Google Scholar 

  • Lusk, D., Abdulhalim, I., Placido, F.: Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal. Opt. Commun. 198(4-6), 273–279 (2001)

    Article  ADS  Google Scholar 

  • Moghimi, M., Mirzakuchaki, S.N.: Modification of photonic crystals for obtaining common band gaps for TE and TM waves. Can. J. Phys. 90, 175–180 (2012)

    Article  ADS  Google Scholar 

  • Qi, L., Zhang, X.: Photonic band gaps of one-dimensional ternary plasma photonic crystals with periodic and periodic-varying structures. J. Electromagn. Waves Appl. 25, 539–552 (2011)

    Article  Google Scholar 

  • Qi, L., Yang, Z., Lan, F.: Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals. Phys. Plasmas 17(4), 042501 (2010)

    Article  ADS  Google Scholar 

  • Shen, K.F., Guo, B.: Realization of tunable TE/TM wave splitter with one-dimensional plasma dielectric photonic crystal. Int. J. Mod. Phys. B 32, 1850253 (2018)

    Article  ADS  Google Scholar 

  • Singh, B.K., Kumar, P., Pandey, P.C.: Tunable photonic band-gaps in one-dimensional photonic crystals containing linear graded index material. Appl. Phys. B 117, 947–956 (2014)

    Article  ADS  Google Scholar 

  • Singh, B., Chaudhari, M., Pandey, P.: Photonic and omnidirectional band gap engineering in one-dimensional photonic crystals consisting of linearly graded index material. J. Lightwave Technol. 34(10), 2431–2438 (2016)

    Article  ADS  Google Scholar 

  • Tolmachev, V., Perova, T., Krutkova, E.: Elaboration of the gap-map method for the design and analysis of one-dimensional photonic crystal structures. Phys. E 41(6), 1122–1126 (2009)

    Article  Google Scholar 

  • Tolmachev, V.A., Baldycheva, A.V., Dyakov, S.A.: Optical contrast tuning in three-component one-dimensional photonic crystals. J. Lightwave Technol. 28, 1521–1529 (2010)

    Article  ADS  Google Scholar 

  • Wang, M.Y., Zhou, Y.S., Wang, H.Y.: An optical unidirectional device tunable by a magnetic field. Opt. Commun. 322, 198–201 (2014)

    Article  ADS  Google Scholar 

  • Wen, Y.D., Liu, S.B., Zhang, H.F., Wang, L.L.: The absorber realized by 2D photonic crystals with plasma constituents. J. Phys. D Appl. Phys. 51, 025108 (2018)

    Article  ADS  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  • Yu, Z., Veronis, G., Wang, Z.: One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys. Rev. Lett. 100(2), 023902 (2008)

    Article  ADS  Google Scholar 

  • Zhang, L., Ouyang, J.T.: Experiment and simulation on one-dimensional plasma photonic crystals. Phys. Plasmas 21, 103514 (2014)

    Article  ADS  Google Scholar 

  • Zhang, H.F., Liu, S.B., Kong, X.K.: Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure. Phys. Plasmas 19(11), 112102 (2012)

    Article  ADS  Google Scholar 

  • Zhang, W.D., Wang, H.T., Zhao, X.L., Lan, W.X.: Bandgap-tunable device realized by ternary plasma photonic crystals arrays. Phys. Plasmas 27, 063508 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No. K201927) and Jiangsu Overseas Visiting Scholar Program for the University prominent Young & Middle-aged Teachers and Presidents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, SJ., Hu, CX. & Zhang, HF. A reconfigurable device based on the one-dimensional magnetized plasma photonic crystals nested with the Pell and Thue–Morse sequences. Opt Quant Electron 52, 384 (2020). https://doi.org/10.1007/s11082-020-02505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02505-3

Keywords

Navigation