Skip to main content
Log in

Interband optical Raman gain in a strained oxide quantum dot with Hylleraas co-ordinates

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Exciton Raman scattering of a three-level system is observed in a CdO/ZnO quantum dot using the size dependent Smorodinsky–Winternitz potential. Resonance Raman excitation for the fundamental optical transition is concentrated in the present work. The differential cross section of Raman optical intensity associated with the exciton is computed with the incident photon energy and the geometrical confinement effect. Raman differential cross section is found by the third-order harmonic generation. The built-in internal fields are incorporated in the heterostructure. They arise between the interior and outer core/shell materials in the heterostructure which contains the spontaneous polarization and piezoelectric polarization. The Hamiltonian of the exciton is included with the dielectric mismatch effect and the variational approach with Hylleraas co-ordinates are employed to obtain the energy eigen values numerically. The energy dependent effective mass of electron and the size related strain-induced potentials for the conduction and valence bands are incorporated in the Hamiltonian. The nonlinear optical properties are obtained with the density matrix approach. The results show that the Raman intensities are more influenced in the strong confinement region. The resonance peak Raman intensity is observed as 6.84 (arb.units) for a 60 Å spherical dot. The Raman gain is optimized by varying the dot size. And, the Raman optical gain as high as 240/cm is achieved for the dot radius, 22 Å of CdO/ZnO spherical quantum dot. This can be employed for the potential applications in optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aramburo, A.L.M., Echeverri, C.A.D., Arango, R.L.R.: Electron Raman scattering in pyramidal quantum dots. Revista EIA 12, 69 (2016)

    Article  Google Scholar 

  • Bala, K.J., Peter, A.J., Lee, C.W.: Interband and intersubband optical transition energies in a Ga0.7In0.3 N/GaN quantum dot. Optik 183, 1106 (2019)

    Article  ADS  Google Scholar 

  • Baskoutas, S., Paspalakis, E., Terzis, A.F.: Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field. Phys. Rev. B 74, 153306–153310 (2006)

    Article  ADS  Google Scholar 

  • Betancourt-Riera, R., Betancourt-Riera, R., Riera, R., Rosas, R.: Electron Raman scattering in asymmetrical multiple quantum wells system with an external electric field. Phys. E 44, 1152–1157 (2012)

    Article  Google Scholar 

  • Butylkin, V.S.: Low-frequency asymptotic behavior of the Raman susceptibility of molecules. JETP 82(1), 38–45 (1996)

    ADS  Google Scholar 

  • Cantarero, A.: In: Bhushan, B. (ed.) Encyclopedia of Nanotechnology. Springer, Germany (2012)

  • Cardona, M., Guntherodt, G.: Light Scattering in Solids V (Topics in Applied Physics Vol. 66). Springer, Heidelberg (1989)

    Book  Google Scholar 

  • Deyasi, A., Bhattacharyya, S.: Interband transition energy of circular quantum dots under transverse magnetic field. Phys. Proc. 54, 118–126 (2014)

    Article  ADS  Google Scholar 

  • Deyasi, A., Bhattacharyya, S., Das, N.R.: Computation of intersubband transition energy in normal and inverted core–shell quantum dots using finite difference technique. Superlatt. Microstruct. 6, 414–425 (2013)

    Article  ADS  Google Scholar 

  • Faist, J., Capasso, F., Sirtori, C., Sivco, D.L., Cho, A.Y.: In: Liu, H.C., Capasso, F. (eds.) Intersubband Transitions in Quantum Wells: Physics and Device Applications II, Semiconductors and Semimetals. Academic, San Diego (2000)

  • Feddi, E., Zouitine, A., Oukerroum, A., Dujardin, F., Assaid, E., Zazoui, M.: Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot. J. Appl. Phys. 117, 064309 (2015)

    Article  ADS  Google Scholar 

  • Ferrara, M.A., Rendina, I., Sirleto, L.: Stimulated raman scattering in quantum dots and nanocomposite silicon based materials. In: Dr. Natalia Kamanina (ed.) Nonlinear Optics (2012)

  • Gong, K., Kelley, D.F., Kelley, A.M.: Resonance Raman spectroscopy and electron–phonon coupling in zinc selenide quantum dots. J. Phys. Chem. C 120(51), 29533–29539 (2016)

    Article  Google Scholar 

  • Hui, P.: Quantum-confinement effects on binding energies and optical properties of excitons in quantum dots. Chin. Phys. Lett. 21(1), 160–163 (2004)

    Article  Google Scholar 

  • Ismailov, T.G., Mehdiyev, B.H.: Electron Raman scattering in a cylindrical quantum dot in a magnetic field. Phys. E 31, 72–77 (2006)

    Article  Google Scholar 

  • Jin, M., Xie, W.: Simultaneous effects of hydrostatic pressure and temperature and effect of spin–orbit interaction on the third harmonic generation. Superlatt. Microstruc. 73, 330–341 (2014)

    Article  ADS  Google Scholar 

  • Kamanina, N.: Stimulated Raman Scattering in Quantum Dots and Nanocomposite Silicon Based Materials. Nonlinear Optics, Croatia (2012)

    Google Scholar 

  • Karabulut, I., Baskoutas, S.: Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity. J. Appl. Phys. 103, 073512 –073517 (2008)

    Article  ADS  Google Scholar 

  • Karthikeyan, N., John Peter, A., Lee, C.W.: Optical rectification coefficient in an oxide quantum dot with different confinement potentials. Opt. Quant. Electron. 50, 412–425 (2018)

    Article  Google Scholar 

  • Liu, C., Cheung, I.W., SpringThorpe, A.J., Dharma-waranda, C., Wasilewski, Z.R., Lockwood, D.J., Aers, G.C.: Intersubband Raman laser from Ga In As/Al In As double quantum wells. Appl. Phys. Lett. 78, 3580 (2001)

    Article  ADS  Google Scholar 

  • Lu, F., Liu, C.-H.: Effect of built-in electric field on electron Raman scattering in InGaN/GaN coupled quantum wells. Superlatt. Microstruct. 50, 582–589 (2011)

    Article  ADS  Google Scholar 

  • Meulenberg, R.W., Lee, J.R.I., Wolcott, A., Zhang, J.Z., Terminello, L.J., van Buuren, T.: Determination of the exciton binding energy in CdSe quantum dots. ACS Nano 3(2), 325–330 (2009)

    Article  Google Scholar 

  • Miura, M., Katayama, S.: Electric-field effects on intersubband Raman laser gain in modulation-doped GaAs/AlGaAs coupled double quantum wells. Sci. Technol. Adv. Mat. 7, 286 (2006)

    Article  Google Scholar 

  • Nicolay, S., Feltin, E., Carlin, J.-F., Grandjean, N., Nevou, L., Julien, F.H., Schmidbauer, M., Remmele, T., Albrecht, M.: Strain-induced interface instability in GaN/AlN multiple quantum wells. Appl. Phys. Lett. 91, 061927-1–061927-3 (2007)

    Article  ADS  Google Scholar 

  • Pinczuk, A., Burstien, E., Cardona, M.: Light Scattering in Solids I; Springer Topics in Applied Physics, vol. 8. Springer, Heidelberg (1983)

    Google Scholar 

  • Sirtori, C., Teissier, R.: In: Paiella, R. (ed) Intersubband Transitions in Quantum Structures, I ed. McGraw-Hill, New York (2006)

  • Solaimani, M., Moghadam, H.: Effects of interdiffusion and electric field on the optical rectification coefficient of GaAs/Alw Ga1—wAs systems: crossover from single to multiple quantum wells. Appl. Phys. A 126, 278–287 (2020)

    Article  ADS  Google Scholar 

  • Sun, G., Khurgin, J.B., Friedman, L., Soref, R.A.: Tunable intersubband Raman laser in GaAs/AlGaAs multiple quantum wells. J. Opt. Soc. Am. B 15, 648–651 (1998)

    Article  ADS  Google Scholar 

  • Taqi, A., Diouri, J.: A theoretical model for exciton binding energies in rectangular and parabolic spherical finite quantum dots. Semicond Phys Quant Electr Optoelectr 15(4), 365–369 (2012)

    Article  Google Scholar 

  • Winternitz, P., Smorodinsk, Y.A., Uhlir, M., Fris, I.: Symmetry Groups in Classical and Quantum Mechanics. J. Nucl. Phys. 4, 444–450 (1967)

    MathSciNet  Google Scholar 

  • Xie, W.: Raman scattering of an exciton in a quantum dot. Phys. B Phys. B 413, 96–99 (2013a)

    ADS  Google Scholar 

  • Xie, W.: Third-order nonlinear optical susceptibility of a donor in elliptical quantum dots. Superlatt. Microst. 53, 49–54 (2013b)

    Article  ADS  Google Scholar 

  • Xie, W.: Raman scattering of an exciton in a quantum dot. Phys. B 413, 96–99 (2013c)

    Article  ADS  Google Scholar 

  • Zhu, J.H., Wang, L.J., Zhang, S.M., Wang, H., Zhao, D.G., Zhu, J.J., Liu, Z.S., Jiang, D.S., Yang, H.: Simulation of the light extraction efficiency of nanostructure light-emitting diodes. Chin. Phys. B 20, 077804 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2017H1D8A2031138).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. John Peter or Chang Woo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, A.J., Karthikeyan, N. & Lee, C.W. Interband optical Raman gain in a strained oxide quantum dot with Hylleraas co-ordinates. Opt Quant Electron 52, 358 (2020). https://doi.org/10.1007/s11082-020-02465-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02465-8

Keywords

Navigation