Skip to main content
Log in

Effect of light absorption and temperature on self-focusing of finite Airy–Gaussian beams in a plasma with relativistic and ponderomotive regime

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present paper, we have studied the influence of light absorption and temperature on self-focusing of finite Airy–Gaussian beams in plasma by considering the combined effects of relativistic and the ponderomotive regime. The nonlinear differential equations of dimensionless beam-width parameter are derived using the paraxial ray and Wentzel–Kramers–Brillouin approximation, and they are solved numerically. The effect of absorption coefficient, plasma electron temperature, relative plasma density, intensity parameter and modulation parameter beam on the self-focusing of finite Airy–Gaussian beams in plasma is presented numerically and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aggarwal, M., Kumar, H., Kant, N.: Propagation of Gaussian laser beam through magnetized cold plasma with increasing density ramp. Optik 127, 2212–2216 (2016)

    Article  ADS  Google Scholar 

  • Aggarwala, M., Vijb, S., Kant, N.: Propagation of cosh Gaussian laser beam in plasma with density ripple in relativistic-ponderomotive regime. Optik 125, 5081–5084 (2014)

    Article  ADS  Google Scholar 

  • Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609–636 (1968)

    Article  ADS  Google Scholar 

  • Alaidi, I., Boustimi, M., Nebdi, H., Belafhal, A.: Propagation through a paraxial ABCD optical system of a novel beams family: finite Airy–Gaussian Hermite–Gaussian beams. Phys. Chem. News 73, 10–13 (2014)

    Google Scholar 

  • Bandres, M.A., Gutiérrez-Vega, J.C.: Airy-Gauss beams and their transformation by paraxial optical systems. Opt. Exp. 15, 16719–16728 (2007)

    Article  ADS  Google Scholar 

  • Baumgartl, J., Mazilu, M., Dholakia, K.: Optically mediated particle clearing using Airy wavepackets. Nat. Photonics 2, 675–678 (2008)

    Article  ADS  Google Scholar 

  • Berry, M.V., Balazs, N.L.: Nonspreading wave-packets. Am. J. Phys. 47, 264–267 (1979)

    Article  ADS  Google Scholar 

  • Bokaei, B., Niknam, A.R., Jafari Milani, M.R.: Turning point temperature and competition between relativistic and ponderomotive effects in self-focusing of laser beam in plasma. Phys. Plasmas 20, 103107-1–103107-6 (2013)

    Article  ADS  Google Scholar 

  • Borisov, A.B., Borovskiy, A.V., Shiryaev, O.B., Korobkin, V.V., Prokhorov, A.M., Solem, J.C., Luk, T.S., Boyer, K., Rhodes, C.K.: Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 5830–5845 (1992)

    Article  ADS  Google Scholar 

  • Brandi, H.S., Manus, C., Mainfray, G., Lehner, T.: Relativistic self-focusing of ultraintense laser pulses in inhomogeneous underdense plasmas. Phys. Rev. E 47, 3780–3783 (1993a)

    Article  ADS  Google Scholar 

  • Brandi, H.S., Manus, C., Mainfray, G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. I. Paraxial approximation. Phys. Fluids B 5, 3539–3550 (1993b)

    Article  ADS  Google Scholar 

  • Chen, C., Chen, B., Peng, X., Deng, D.: Propagation of Airy–Gaussian beam in Kerr medium. J. Opt. 17, 035504-1–035504-9 (2015)

    ADS  Google Scholar 

  • Chu, X., Zhou, G., Chen, R.: Analytical study of the self-healing property of Airy beams. Phys. Rev. A 85, 013815-1–013815-6 (2012)

    ADS  Google Scholar 

  • Corkum, P.B., Rolland, C., Rao, T.S.: Supercontinuum generation in gases. Phys. Rev. Lett. 57, 2268–2271 (1986)

    Article  ADS  Google Scholar 

  • Deng, D.M.: Propagation of Airy–Gaussian beams in a quadratic-index medium. Eur. Phys. J. D 65, 553–556 (2011)

    Article  ADS  Google Scholar 

  • Deng, D.M., Li, H.: Propagation properties of Airy–Gaussian beams. Appl. Phys. B 106, 677–681 (2012)

    Article  ADS  Google Scholar 

  • Ebrahim, A.A.A., Ez-zariy, L., Boustimi, M., Chafiq, A., Nebdi, H., Belafhal, A.: Diffraction of finite Airy–Hermite–Gaussian beams by an apertured misaligned optical system. Phys. Chem. News 73, 21–29 (2014)

    Google Scholar 

  • Ebrahim, A.A.A., Ez-zariy, L., Belafhal, A.: Propagation of finite Airy Hermite hollow Gaussian beams through a paraxial ABCD optical system. I. J. A. E. E. S 3, 11–20 (2015)

    Google Scholar 

  • Ez-Zariy, L., Hennani, S., Nebdi, H., Belafhal, A.: Propagation characteristics of Airy–Gaussian beams passing through a misaligned optical system with finite aperture. Opt. Photon. J. 4, 325–336 (2014a)

    Article  ADS  Google Scholar 

  • Ez-zariy, L., Nebdi, H., Boustimi, M., Belafhal, A.: Transformation of a two-dimensional finite energy Airy beam by an ABCD optical system with a rectangular annular aperture. Phys. Chem. News 73, 39–49 (2014b)

    Google Scholar 

  • Gill, T.S., Mahajan, R., Kaur, R.: Self-focusing of cosh-Gaussian laser beam in a plasma with weakly relativistic and ponderomotive regime. Phys. Plasmas 18, 033110-1–033110-8 (2011)

    Article  ADS  Google Scholar 

  • Hora, H.: Self-focusing of laser beams in a plasma by ponderomotive forces. Z. Phys. 226, 156–159 (1969)

    Article  ADS  Google Scholar 

  • Hora, H.: New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 37–45 (2007)

    Article  ADS  Google Scholar 

  • Kant, N., Wani, M.A.: Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption. Commun. Theor. Phys. 64, 103–107 (2015)

    Article  MathSciNet  Google Scholar 

  • Kant, N., Saralch, S., Singh, H.: Ponderomotive self-focusing of a short laser pulse under a plasma density ramp. Nukleonika 56, 149–153 (2011)

    Google Scholar 

  • Lemoff, B.E., Yin, G.Y., Gordan, C.L., Barty, C.P.J., Harris, S.E.: Demonstration of a 10-Hz, femtosecond-pulse-driven XUV laser at 41.8 nm in XeIX. Phys. Rev. Lett. 74, 1574–1577 (1995)

    Article  ADS  Google Scholar 

  • Li, J., Zang, W., Tian, J.: Vacuum laser-driven acceleration by Airy beams. Opt. Exp. 18, 7300–7306 (2010)

    Article  ADS  Google Scholar 

  • Li, J., Fan, X., Zang, W., Tian, J.: Vacuum electron acceleration driven by two crossed Airy beams. Opt. Lett. 36, 648–650 (2011)

    Article  ADS  Google Scholar 

  • Lourenco, S., Kowarsch, N., Scheid, W., Wang, P.X.: Acceleration of electrons and electromagnetic fields of highly intense laser pulses. Laser Part. Beams 28, 195–201 (2010)

    Article  ADS  Google Scholar 

  • Milani, M.R.J., Niknam, A.R., Bokaei, B.: Temperature effect on self-focusing and defocusing of Gaussian laser beam propagation through plasma in weakly relativistic regime. IEEE Trans. Plasma Sci. 42, 742–747 (2014)

    Article  ADS  Google Scholar 

  • Nanda, V., Kant, N., Wani, M.A.: Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile. Phys. Plasmas 20, 113109-1–113109-7 (2013)

    Article  ADS  Google Scholar 

  • Niknam, A.R., Hashemzadeh, M., Shokri, B.: Weakly relativistic and ponderomotive effects on the density steepening in the interaction of an intense laser pulse with an underdense plasma. Phys. Plasmas 16, 033105-1–033105-5 (2009)

    ADS  Google Scholar 

  • Niu, H.Y., He, X.T., Qiao, B., Zhou, C.T.: Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 51–59 (2008)

    Article  Google Scholar 

  • Osman, F., Castillo, R., Hora, H.: Relativistic and ponderomotive self-focusing at laser-plasma interaction. J. Plasma Phys. 61, 263–273 (1999)

    Article  ADS  Google Scholar 

  • Ouahid, L., Dalil-Essakali, L., Belafhal, A.: Relativistic self-focusing of finite Airy–Gaussian beams in collisionless plasma using the Wentzel–Kramers–Brillouin approximation. Optik 154, 58–66 (2018)

    Article  ADS  Google Scholar 

  • Patil, S.D., Takale, M.V.: Weakly relativistic ponderomotive effects on self-focusing in the interaction of cosh-Gaussian laser beams with a plasma. Laser Phys. Lett. 10, 115402-1–115402-5 (2013)

    Article  ADS  Google Scholar 

  • Patil, S.D., Takale, M.V.: Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: effect of light absorption. AIP Conf. Proc. 1728, 020129-1–020129-4 (2016)

    Google Scholar 

  • Patil, S.D., Takale, M.V., Fulari, V.J., Gupta, D.N., Suk, H.: Combined effect of ponderomotive and relativistic self-focusing on laser beam propagation in a plasma. Appl. Phys. B 111, 1–6 (2013)

    Article  ADS  Google Scholar 

  • Patil, S.D., Takale, M.V., Fulari, V.J., Gill, T.S.: Sensitiveness of light absorption for self-focusing at laser-plasma interaction with weakly relativistic and ponderomotive regime. Laser Part. Beams 34, 669–674 (2016)

    Article  ADS  Google Scholar 

  • Polynkin, P., Kolesik, M., Moloney, J.V., Siviloglou, G.A., Christodoulides, D.N.: Curved plasma channel generation using ultra-intense Airy beams. Science 324, 229–232 (2009)

    Article  ADS  Google Scholar 

  • Shi, Z., Xue, J., Zhu, X., Xiang, Y., Li, H.: Interaction of Airy–Gaussian beams in defected photonic lattices. Phys. Rev. E 95, 042209-1–0422091-8 (2017)

    ADS  Google Scholar 

  • Siviloglou, G.A., Christodoulides, D.N.: Accelerating finite energy Airy beams. Opt. Lett. 32, 979–981 (2007)

    Article  ADS  Google Scholar 

  • Siviloglou, G.A., Broky, J., Dholakia, K., Christodoulides, D.N.: Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901-1–213901-4 (2007)

    Article  ADS  Google Scholar 

  • Sodha, M.S., Ghatak, A.K., Tripathi, V.K.: Self-Focusing of Laser Beams in Dielectrics, Plasmas and Semiconductors. Tata McGraw-Hill Go. Ltd., New Delhi (1974)

    Google Scholar 

  • Sodha, M.S., Ghatak, A.K., Tripathi, V.K.: Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169–265 (1976)

    Article  Google Scholar 

  • Sprangle, P., Esarey, E., Krall, J.: Laser driven electron acceleration in vacuum, gases and plasmas. Phys. Plasmas 3, 2183–2190 (1996)

    Article  ADS  Google Scholar 

  • Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)

    Article  ADS  Google Scholar 

  • Ting, A., Krushelnick, K., Burris, H.R., Fisher, A., Manka, C., Moore, C.I.: Back scattered supercontinuum emission from high-intensity laser-plasma interactions. Opt. Lett. 21, 1096–1098 (1996)

    Article  ADS  Google Scholar 

  • Umstadter, D.: Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 1774–1785 (2001)

    Article  ADS  Google Scholar 

  • Winterberg, F.: Laser for inertial confinement fusion driven by high explosives. Laser Part. Beams 26, 127–135 (2008)

    Article  Google Scholar 

  • Zhang, P., Prakash, J., Zhang, Z., Mills, M.S., Efremidis, N.K., Christodoulides, D.N., Chen, Z.: Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett. 36(15), 2883–2885 (2011)

    Article  ADS  Google Scholar 

  • Zheng, Z., Zhang, B., Chen, H., Ding, J., Wang, H.: Optical trapping with focused Airy beams. Appl. Opt. 50(1), 43–49 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belafhal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouahid, L., Dalil-Essakali, L. & Belafhal, A. Effect of light absorption and temperature on self-focusing of finite Airy–Gaussian beams in a plasma with relativistic and ponderomotive regime. Opt Quant Electron 50, 216 (2018). https://doi.org/10.1007/s11082-018-1483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1483-3

Keywords

Navigation