Skip to main content
Log in

Smoothed finite element method for time dependent analysis of quantum resonance devices

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a new finite element method (FEM) is introduced to study the time-dependent wave nature of the electron in quantum resonance devices. Unlike the well-known FEM, the new method smooths the wave function derivatives over the edges. In this sense, the new method is termed “smoothed FEM” where an “inter-element” matrix is formed to smooth the derivatives over the edges. For the electron’s wave function propagation in time, the presented method exploits the time domain beam propagation method (TD-BPM). Based only on first order elements, our suggested SFETD-BPM has high accuracy levels comparable to second-order conventional FEM elements; thanks to the element smoothing. The proposed method numerical performance is tested through the analysis of a quantum resonance cavity and a quantum resonant tunneling device. It is clearly demonstrated that the presented method is not only accurate but also more time efficient than the conventional FEM approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdrabou, A., Heikal, A., Obayya, S.: Efficient rational Chebyshev pseudo-spectral method with domain decomposition for optical waveguides modal analysis. Opt. Express 24(10), 10495–10511 (2016)

    Article  ADS  Google Scholar 

  • Arnold, A., Schulte, M.: Transparent boundary conditions for quantum-waveguide simulations. Math. Comput. Simul. 79(4), 898–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Atia, K., Heikal, A., Obayya, S.: Efficient smoothed finite element time domain analysis for photonic devices. Opt. Express 23(17), 22199–22213 (2015)

    Article  ADS  Google Scholar 

  • Bank, R., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44(170), 283–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y., Wu, T.: Radiation properties in electron waveguides. J. Appl. Phys. 101(2), 1–9 (2007)

    Google Scholar 

  • Cheng, C., Lee, J., Lim, K., Massoud, H., Liu, Q.: 3D quantum transport solver based on the perfectly matched layer and spectral element methods for the simulation of semiconductor nanodevices. J. Comput. Phys. 227(1), 455–471 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gotoh, H., Koshiba, M., Tsuji, Y.: Finite-element time-domain beam propagation method with perfectly matched layer for electron waveguide simulations. IEICE Electron. Express 8(16), 1361–1366 (2011)

    Article  Google Scholar 

  • Harrison, P., Valavanis, A.: Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Sem. Wiley, Hoboken (2016)

    Book  Google Scholar 

  • Heikal, A., Hussain, F., Hameed, M., Obayya, S.: Efficient polarization filter design based on plasmonic photonic crystal fiber. J. Lightwave Technol. 33(13), 2868–2875 (2015)

    Article  ADS  Google Scholar 

  • Huang, Y., Yi, N.: The superconvergent cluster recovery method. J. Sci. Comput. 44(3), 301–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, Y., Jiang, K., Yi, N.: Some weighted averaging methods for gradient recovery. Adv. Appl. Math. Mech. 4(02), 131–155 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Jüngel, A., Mennemann, J.: Time-dependent simulations of quantum waveguides using a time-splitting spectral method. Math. Comput. Simul. 81(4), 883–898 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Kaji, R., Koshiba, M.: Equivalent network approach for multistep discontinuities in electron waveguides. IEEE J. Quantum Electron. 31(1), 8–19 (1995)

    Article  ADS  Google Scholar 

  • Koshiba, M., Tsuji, Y.: Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems. J. Lightwave Technol. 18(5), 737–743 (2000)

    Article  ADS  Google Scholar 

  • Koshiba, M., Tsuji, Y., Hikari, M.: Time-domain beam propagation method and its application to photonic crystal circuits. J. Lightwave Technol. 18(1), 102–110 (2000)

    Article  ADS  Google Scholar 

  • LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  • Liu, G.: A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int. J. Comput. Methods 05(02), 199–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, G.: Meshfree Methods. CRC Press, Boca Raton (2010)

    Google Scholar 

  • Liu, G., Nguyen, T.: Smoothed Finite Element Methods. Taylor & Francis, Boca Raton (2010)

    Book  Google Scholar 

  • Obayya, S.: Efficient finite-element-based time-domain beam propagation analysis of optical integrated circuits. IEEE J. Quantum Electron. 40(5), 591–595 (2004)

    Article  ADS  Google Scholar 

  • Roy, T., Tosun, M., Hettick, M., Ahn, G., Hu, C., Javey, A.: 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Appl. Phys. Lett. 108(8), (2016). https://doi.org/10.1063/1.4942647

    Google Scholar 

  • Said, A., Obayya, S.: Efficient analysis of electron waveguides with multiple discontinuities. Opt. Quantum Electron. 47(6), 1333–1338 (2014)

    Article  Google Scholar 

  • Tabbara, M., Blacker, T., Belytschko, T.: Finite element derivative recovery by moving least square interpolants. Comput. Methods Appl. Mech. Eng. 117(1–2), 211–223 (1994)

    Article  ADS  MATH  Google Scholar 

  • Taflove, A., Hagness, S.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (2010)

    MATH  Google Scholar 

  • Torres, C., Lan, Y., Zeng, C., Chen, J., Kou, X., Navabi, A., Tang, J., Montazeri, M., Adleman, J., Lerner, M., Zhong, Y., Li, L., Chen, C., Wang, K.: High-current gain two-dimensional MoS2-base hot-electron transistors. Nano Lett. 15(12), 7905–7912 (2015)

    Article  ADS  Google Scholar 

  • van der Vorst, H.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Wei, H., Chen, L., Huang, Y.: Superconvergence and gradient recovery of linear finite elements for the Laplace–Beltrami operator on general surfaces. SIAM J. Numer. Anal. 48(5), 1920–1943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73(247), 1139–1153 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Xu, J., Jia, J., Lai, S., Ju, J., Lee, S.: Tunneling field effect transistor integrated with black phosphorus-MoS2 junction and ion gel dielectric. Appl. Phys. Lett. 110(3), (2017). https://doi.org/10.1063/1.4974303

    Google Scholar 

  • Younis, B., Heikal, A., Hameed, M., Obayya, S.: Coupling enhancement of plasmonic liquid photonic crystal fiber. Plasmonics 12(5), 1529–1535 (2016)

    Article  Google Scholar 

  • Zienkiewicz, O., Zhu, J.: A simple error estimator and adaptive procedure for practical engineerng analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)

    Article  MATH  Google Scholar 

  • Zubair, A., Nourbakhsh, A., Hong, J., Qi, M., Song, Y., Jena, D., Kong, J., Dresselhaus, M., Palacios, T.: Hot electron transistor with van der Waals base-collector heterojunction and high-performance GaN emitter. Nano Lett. 17(5), 3089–3096 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. A. Obayya.

Ethics declarations

Conflict of interest

Authors would like to clarify that there is no sources of funding, and no potential conflicts of interest (financial or non-financial).

Ethical standard

The authors would like to ensure the objectivity and transparency in the submitted research paper. Additionally, the authors would like to ensure that accepted principles of ethical and professional conduct have been followed through the preparation of the proposed paper.

Human and animal rights statement

Moreover, the submitter research does not involve human participants, or animals.

Additional information

This article is part of the Topical Collection on Optical Wave and Waveguide Theory and Numerical Modelling, OQTNM 2017.

Guest Edited by Bastiaan Pieter de Hon, Sander Johannes Floris, Manfred Hammer, Dirk Schulz, Anne-Laure Fehrembach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atia, K.S.R., Heikal, A.M. & Obayya, S.S.A. Smoothed finite element method for time dependent analysis of quantum resonance devices. Opt Quant Electron 50, 127 (2018). https://doi.org/10.1007/s11082-018-1392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1392-5

Keywords

Navigation