Skip to main content
Log in

Solutions of time-fractional Kudryashov–Sinelshchikov equation arising in the pressure waves in the liquid with gas bubbles

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, analytical approximate solutions for time-fractional Kudryashov–Sinelshchikov equation have been obtained. Two different techniques have been implemented to calculate the solutions, namely, homotopy analysis method and residual power series method. The approximate solutions are represented numerically and graphically for different values of fractional order of derivative. The numerical results are expressed in Tables 1, 2, 3 and 4 which show that the approximate solutions are in good agreement with the exact solution. The comparative study of the numerical results reveal that both methods are reliable and effective tools for the solution of time-fractional Kudryashov–Sinelshchikov equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alquran, M.: Analytical solutions of fractional foam drainage equation by residual power series method. Math. Sci. 8(4), 153–160 (2014)

    Article  MathSciNet  Google Scholar 

  • Alquran, M.: Analytical solution of time-fractional two-component evolutionary system of order 2 by residual power series method. J. Appl. Anal. Comput. 5, 589–599 (2015)

    MathSciNet  Google Scholar 

  • Alquran, M., Al-Khaled, K., Chattopadhyay, J.: Analytical solution of fractional population difussion model: residual power series method. Nonlinear Stud. 22, 31–39 (2015)

    MATH  MathSciNet  Google Scholar 

  • Arqub, O.A., El-Ajou, A., Momani, S.: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J. Comput. Phys. 293, 385–399 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Babolian, E., Saeidian, J.: Analytic approximate solutions to Burgers, Fisher, Huxley equations and two combined forms of these equations. Commun. Nonlinear Sci. Numer. Simul. 14, 1984–1992 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Das, D., Ray, P.C., Bera, R.K.: Solution of Riccati type nonlinear fractional differential equation by Homotopy analysis method. Int. J. Sci. Res. Educ. 4, 5517–5531 (2016)

    Google Scholar 

  • El-Ajou, A., Arqub, O.Abu, Momani, S.: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Gupta, A.K., Ray, S.S.: On the solitary wave solution of fractional Kudryashov–Sinelshchikov equation describing nonlinear wave processes in a liquid containing gas bubbles. Appl. Math. Comput. 298, 1–12 (2017)

    MathSciNet  Google Scholar 

  • He, Y., Li, S., Long, Y.: Exact solutions of the Kudryashov–Sinelshchikov equation using the multiple (G’/G)—expansion method. Math. Probl. Eng. 2013, 1–7 (2013)

    MATH  MathSciNet  Google Scholar 

  • Jafari, H., Seifi, S.: Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 1962–1969 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  • Kumar, A., Kumar, S.: A modified analytical approach for fractional discrete KdV equations arising in particle vibrations. In: Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, pp. 1–12 (2017)

  • Kumar, A., Kumar, S., Singh, M.: Residual power series method for fractional Sharma–Tasso–Olever equation. Commun. Numer. Anal. 2016(1), 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  • Kumar, S., Kumar, A., Odibat, Z.M.: A nonlinear fractional model to describe the population dynamics of two interacting species. Math. Methods Appl. Sci. 40(11), 4134–4148 (2017)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kumar, A., Kumar, S., Yan, Sheng-Ping: Residual power series method for fractional diffusion equations. Fundam. Informaticae 151, 213–230 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Mahmood, B.A., Yousif, M.A.: A residual power series technique for solving Boussinesq–Burgers equations. Cogent Math. 4, 1–11 (2017a)

    Article  Google Scholar 

  • Mahmood, B.A., Yousif, M.A.: A novel analytical solution for the modified Kawahara equation using the residual power series method. Nonlinear Dyn. 89, 1233–1238 (2017b)

    Article  MathSciNet  Google Scholar 

  • McBrid, A., McBrid, J., Agrawal, O.P.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Theoretical Developments and Applications in Physics and Engineering. Springer, New York (2007)

    Google Scholar 

  • Nassar, C.J., Revelli, J.F., Bowman, R.J.: Application of the homotopy analysis method to the Poisson–Boltzmann equation for semiconductor devices. Commun. Nonlinear Sci. Numer. Simul. 16, 2501–2512 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  • Ryabov, P.N.: Exact solutions of the Kudryashov–Sinelshchikov equation. Appl. Math. Comput. 217, 3585–3590 (2010)

    MATH  MathSciNet  Google Scholar 

  • Singh, J., Kumar, D., Swroop, R., Kumar, S.: An efficient computational approach for time-fractional Rosenau–Hyman equation. Neural Comput. Appl. pp. 1–8 (2017). doi:10.1007/s00521-017-2909-8

  • Song, L., Zhang, H.: Application of homotopy analysis method to fractional KdV–Burgers–Kuramoto equation. Phys. Lett. A 367, 88–94 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Tariq, H., Akram, G.: Residual power series method for solving time-space-fractional Benney-Lin equation arising in falling film problems. J. Appl. Math. Comput. (2016). doi:10.1007/s12190-016-1056-1

    MATH  Google Scholar 

  • Tchier, F., Inc, M., Korpinar, Z.S., Baleanu, D.: Solutions of the time fractional reaction-diffusion equations with residual power series method. Adv. Mech. Eng. 8(10), 1–10 (2016)

    Article  Google Scholar 

  • Wang, L., Chen, X.: Approximate analytical solutions of time fractional Whitham–Broer–Kaup equations by a residual power series method. Entropy 17, 6519–6533 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Xu, F., Gao, Y., Yang, X., Zhang, H.: Construction of fractional power series solutions to fractional Boussinesq equations using residual power series method. Math. Probl. Eng. 2016, 5492535 (2016)

    MathSciNet  Google Scholar 

  • Zhang, Y., Kumar, A., Kumar, S., Baleanu, D., Yang, X.: Residual power series method for time-fractional Schrodinger equations. J. Nonlinear Sci. Appl. 9, 5821–5829 (2016)

    MathSciNet  Google Scholar 

  • Zhen, W., Li, Z., Hong-Qing, Z.: Solitary solution of discrete mKdV equation by homotopy analysis method. Commun. Theor. Phys. 49, 1373–1378 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Zurigat, M., Momani, S., Odibat, Z., Alawneh, A.: The homotopy analysis method for handling systems of fractional differential equations. Appl. Math. Model. 34, 24–35 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazala Akram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, G., Sadaf, M. & Anum, N. Solutions of time-fractional Kudryashov–Sinelshchikov equation arising in the pressure waves in the liquid with gas bubbles. Opt Quant Electron 49, 373 (2017). https://doi.org/10.1007/s11082-017-1202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1202-5

Keywords

Navigation