Skip to main content
Log in

Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The reconfigurable concept of a graphene loaded patch antenna with increasing gain is proposed in this paper. We have developed the patch antenna with inset feed for THz band application for which graphene load is used to obtain the reconfigurable characteristic. It has been shown that by increasing the graphene chemical potential, the antenna resonant frequency shifted and the gain increased drastically up to 4 dBi. Additionally, we have shown that antenna efficiency is improved up to 78% which shows more than 100% of enhancement in comparison to basic antenna by increasing the graphene chemical potential. Finally, considering the antenna gain improvement, we have implemented the metamaterial layer over the antenna. In this case, the gain is increased more than 5–6 dBi. In addition, when we put the metamaterial layer over the antenna, the graphene layer shows more linear characteristics. By using parametric studies, we have defined the best point for metamaterial layer around 0.58λ. The final antenna gain is more than 11 dBi, which is useful for THz communication and THz medical imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelrehim, A.A.A., Ghafouri-Shiraz, H.: High performance patch antenna using circular split ring resonators and thin wires employing electromagnetic coupling improvement. Photon Nanostruct Fundam Appl. 21, 19–31 (2016)

    Article  ADS  Google Scholar 

  • Balasekaran, S., Endo, K., Tanabe, T., Oyama, Y.: Patch antenna coupled 0.2 THz TUNNETT oscillators. Solid-State Electron. 54(12), 1578–1581 (2010)

    Article  ADS  Google Scholar 

  • Burokur, S.N., Yahiaoui, R., de Lustrac, A.: Subwavelength metamaterial-based resonant cavities fed by multiple sources for high directivity. Microw. Opt. Technol. Lett. 51(8), 1883–1888 (2009)

    Article  Google Scholar 

  • Cotton, M., Herasimenka, S.Y., Dauksher, W.J., Howard, E., Strnad, M., Bowden, S.: Processing of ultrathin silicon heterojunction solar cells bonded to a glass carrier. In Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd, pp. 0643–0644. IEEE (2016)

  • Esquius-Morote, M., Gómez-Dı, J.S., Perruisseau-Carrier, J.: Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014)

    Article  ADS  Google Scholar 

  • Falkovsky, L.A.: Optical properties of graphene. J. Phys. Conf. Ser. 129(1), 012004 (2008)

    Article  Google Scholar 

  • Gao, J., Yang, X.: Anomalous optical coupling between two silicon wires of a slot waveguide in epsilon-near-zero metamaterials. Opt. Commun. 314, 18–22 (2014)

    Article  ADS  Google Scholar 

  • Heydari, S., Bazgir, M., Zarrabi, F.B., Gandji, N.P., Rastan, I.: Novel optical polarizer design based on metasurface nano aperture for biological sensing in mid-infrared regime. Opt. Quantum Electron. 49(2), 83 (2017)

    Article  Google Scholar 

  • Hosseinbeig, A., Pirooj, A., Zarrabi, F.B.: A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator. J. Magn. Magn. Mater. 423, 203–207 (2017)

    Article  ADS  Google Scholar 

  • Iorsh, I.V., Mukhin, I.S., Shadrivov, I.V., Belov, P.A., Kivshar, Y.S.: Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B 87(7), 075416 (2013)

    Article  ADS  Google Scholar 

  • Jha, K.R., Singh, G.: Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material. Int. J. Numer. Model. Electron. Netw. Devices Fields 24(5), 410–424 (2011)

    Article  MATH  Google Scholar 

  • Jha, K.R., Singh, G.: Analysis and design of terahertz microstrip antenna on photonic bandgap material. J. Comput. Electron. 11(4), 364–373 (2012a)

    Article  Google Scholar 

  • Jha, K.R., Singh, G.: Microstrip patch array antenna on photonic crystal substrate at terahertz frequency. Infrared Phys. Technol. 55(1), 32–39 (2012b)

    Article  ADS  Google Scholar 

  • Jha, K.R., Singh, G.: Prediction of highly directive probe-fed microstrip antenna at terahertz frequency. Int. J. Numer. Model. Electron. Netw. Devices Fields 25(2), 175–191 (2012c)

    Article  Google Scholar 

  • Jing, Y., Xu, J., Fang, N.X.: Numerical study of a near-zero-index acoustic metamaterial. Phys. Lett. A 376(45), 2834–2837 (2012)

    Article  ADS  Google Scholar 

  • J-j, Wang, L-l, Gong, Y-x, Sun, Z-p, Zhu, Y-r, Zhang: High-gain composite microstrip patch antenna with the near-zero-refractive-index metamaterial. Opt.-Int. J. Light Electron Opt. 125(21), 6491–6495 (2014)

    Article  Google Scholar 

  • Kyungho, H., Nguyen, T.K., Park, I., Han, H.: Terahertz Yagi-Uda antenna for high input resistance. J. Infrared Millim. Terahertz Waves 31(4), 441–454 (2010)

    Google Scholar 

  • Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J.M., Alarcón, E., Chigrin, D.N.: Graphene-based nano-patch antenna for terahertz radiation. Photon. Nanostruct. Fundam. Appl. 10(4), 353–358 (2012)

    Article  ADS  Google Scholar 

  • Maji, P.S., Chaudhuri, P.R.: Supercontinuum generation in ultra-flat near zero dispersion PCF with selective liquid infiltration. Opt.-Int. J. Light Electron Opt. 125(20), 5986–5992 (2014)

    Article  Google Scholar 

  • Mangeney, J.: THz photoconductive antennas made from ion-bombarded semiconductors. J. Infrared Millim. Terahertz Waves 33(4), 455–473 (2012)

    Article  Google Scholar 

  • Maraghechi, P., Elezzabi, A.Y.: Experimental confirmation of design techniques for effective bow-tie antenna lengths at THz frequencies. J. Infrared Millim. Terahertz Waves 32(7), 897–901 (2011)

    Article  Google Scholar 

  • Mosallaei, H., Rahmat-Samii, Y.: Periodic bandgap and effective dielectric materials in electromagnetics: characterization and applications in nanocavities and waveguides. IEEE Trans. Antennas Propag. 51(3), 549–563 (2003)

    Article  ADS  Google Scholar 

  • Nejati, A., Sadeghzadeh, R.A., Geran, F.: Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency. Phys. B Condens. Matter 449, 113–120 (2014)

    Article  ADS  Google Scholar 

  • Nejati, A., Zarrabi, F.B., Rahimi, M., Mansouri, Z.: The effect of photonic crystal arrangement on metamaterial characteristic at THz domain. Opt.-Int. J. Light Electron Opt. 126(19), 2153–2156 (2015)

    Article  Google Scholar 

  • Numan, A.B., Sharawi, M.S.: Extraction of material parameters for metamaterials using a full-wave simulator [education column]. IEEE Antennas Propag. Mag. 55(5), 202–211 (2013)

    Article  ADS  Google Scholar 

  • Rahimi, M., Zarrabi, F.B., Ahmadian, R., Mansouri, Z., Keshtkar, A.: Miniaturization of antenna for wireless application with difference metamaterial structures. Prog. Electromagn. Res. 145, 19–29 (2014)

    Article  Google Scholar 

  • Raji, A.T., Lombardi, E.B.: Stability, magnetic and electronic properties of cobalt–vacancy defect pairs in graphene: a first-principles study. Phys. B Condens. Matter 464, 28–37 (2015)

    Article  ADS  Google Scholar 

  • Rivera-Lavado, A., García-Muñoz, L.E., Dohler, G., Malzer, S., Preu, S., Bauerschmidt, S., Montero-de-Paz, J., et al.: Arrays and new antenna topologies for increasing THz power generation using photomixers. J. Infrared Millim. Terahertz Waves 34(2), 97–108 (2013)

    Article  Google Scholar 

  • Sadeghzadeh, R.A., Zarrabi, F.B.: Metamaterial Fabry-Perot cavity implementation for gain and bandwidth enhancement of THz dipole antenna. Opt.-Int. J. Light Electron Opt. 127(13), 5181–5185 (2016)

    Article  Google Scholar 

  • Sharma, A., Singh, G.: Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems. J. Infrared Millim. Terahertz Waves 30(1), 1–7 (2009)

    Article  Google Scholar 

  • Sheng, S., Li, K., Kong, F., Zhuang, H.: Analysis of a tunable band-pass plasmonic filter based on graphene nanodisk resonator. Opt. Commun. 336, 189–196 (2015)

    Article  ADS  Google Scholar 

  • Singh, G.: Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Phys. Technol. 53(1), 17–22 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • Singh, A., Singh, S.: A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed THz applications. Photon. Nanostruct. Fundam. Appl. 14, 52–62 (2015)

    Article  ADS  Google Scholar 

  • Sirmaci, Y.D., Akin, C.K., Sabah, C.: Fishnet based metamaterial loaded THz patch antenna. Opt. Quantum Electron. 48(2), 1–10 (2016)

    Article  Google Scholar 

  • Szentpáli, B., Matyi, G., Fürjes, P., László, E., Battistig, G., Bársony, I., Károlyi, G., Berceli, T.: Thermopile-based THz antenna. Microsyst. Technol. 18(7–8), 849–856 (2012)

    Article  Google Scholar 

  • Zarrabi, F.B., Mohaghegh, M., Bazgir, M., Arezoomand, A.S.: Graphene-Gold Nano-ring antenna for Dual-resonance optical application. Opt. Mater. 51, 98–103 (2016)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B., Pandesh, S., Gandji, N., Arezomand, A.S.: Sub wavelength plasmonic nano-antenna with modified SRR structure for Fano resonance. Opt.-Int. J. Light Electron Opt. 131, 21–28 (2017)

    Article  Google Scholar 

  • Zhang, X., Usi, E., Khan, S.K., Sadatgol, M., Gueney, D.O.: Extremely sub-wavelength negative index metamaterial. Prog. Electromagn. Res. 152, 95–104 (2015)

    Article  Google Scholar 

  • Zhu, S.-E., Yuan, S., Janssen, G.C.A.M.: Optical transmittance of multilayer graphene. EPL (Europhys. Lett.) 108(1), 17007 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Mohsen Seyedsharbaty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedsharbaty, M.M., Sadeghzadeh, R.A. Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load. Opt Quant Electron 49, 221 (2017). https://doi.org/10.1007/s11082-017-1052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1052-1

Keywords

Navigation