Skip to main content
Log in

Rigorous analysis of numerical methods: a comparative study

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

For any photonic device simulation, the accuracy of the numerical solution not only depends on the methods being used but also on the discretization parameters used in that numerical method. In this work, Finite Element Method and Finite Difference Time Domain Method based on Maxwell’s equations were used to simulate optical waveguides and directional couplers. As the solution accuracy may also depend on the index contrast used in such photonic devices, the characteristics of low-index contrast Germanium doped Silica and high-index contrast Silicon Nanowire Waveguides were analyzed, evaluated and benchmarked. Numerical results to benchmark Directional Couplers are also reported in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bierwirth, K., Schulz, N., Arndt, F.: Finite-difference analysis of rectangular dielectric waveguide structures. IEEE Trans. Microw. Theory Tech. 34(11), 1104–1114 (1986)

    Article  ADS  Google Scholar 

  • Chiang, K.S.: Analysis of optical fibers by the effective-index method. Appl. Opt. 25(3), 348–354 (1986)

    Article  ADS  Google Scholar 

  • Chiang, K.S.: Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides. Opt. Quantum Electron. 26(3), S113–S134 (1994)

    Article  Google Scholar 

  • Chiang, K.S., Lo, K.M., Kwok, K.S.: Effective-index method with built-in perturbation correction for integrated optical waveguides. J. Lightwave Technol. 14(2), 223–228 (1996)

    Article  ADS  Google Scholar 

  • Chung, Y., Dagli, N., Thylen, L.: Explicit finite difference vectorial beam propagation method. Electron. Lett. 27(23), 2119–2121 (1991)

    Article  Google Scholar 

  • Davies, J.B., Muilwyk, C.A.: Numerical solution of uniform hollow waveguides with boundaries of arbitrary shape. In: Proceedings of the Institution of Electrical Engineers, vol. 113, pp. 277–284. IET (1966)

  • de Electroniagnetisnio, G., de Cieiicias, F., de Granada, U.: Time-domain integral equation methods for transient analysis. IEEE Antennas Propag. Mag. 34(3), 15–23 (1992)

    Article  Google Scholar 

  • Feit, M., Fleck, J.: Computation of mode properties in optical fiber waveguides by a propagating beam method. Appl. Opt. 19(7), 1154–1164 (1980)

    Article  ADS  Google Scholar 

  • Garcia, S.G., Lee, T.W., Hagness, S.C.: On the accuracy of the ADI-FDTD method. IEEE Antennas Wirel. Propag. Lett. 1(1), 31–34 (2002)

    Article  ADS  Google Scholar 

  • Hagness, S., Taflove, A., Bridges, J.: Wideband ultralow reverberation antenna for biological sensing. Electron. Lett. 33(19), 1594–1595 (1997)

    Article  Google Scholar 

  • Huang, W.P., Xu, C., Chaudhuri, S.K.: A finite-difference vector beam propagation method for three-dimensional waveguide structures. IEEE Photonics Technol. Lett. 4(2), 148–151 (1992a)

    Article  ADS  Google Scholar 

  • Huang, W.P., Xu, C.: A wide-angle vector beam propagation method. IEEE Photonics Technol. Lett. 4(10), 1118–1120 (1992b)

    Article  ADS  MathSciNet  Google Scholar 

  • Itoh, T.: Numerical Techniques for Microwave and Millimeter-Wave Passive Structures. Wiley, New York (1989)

    Google Scholar 

  • Knox, R., Toulios, P.: Integrated circuits for the millimeter through optical frequency range. In: Proceedings of Symposium Submillimeter Waves, vol. 20, pp. 497–515. Polytechnic Press of Polytechnic Institute of Brooklyn (1970)

  • Luebbers, R.: Three-dimensional cartesian-mesh finite-difference time-domain codes. IEEE Antennas Propag. Mag. 36(6), 66–71 (1994)

    Article  ADS  Google Scholar 

  • Marcatili, E.A.: Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst. Tech. J. 48(7), 2071–2102 (1969)

    Article  Google Scholar 

  • März, R.: Integrated Optics: Design and Modeling. Artech House on Demand, Boston (1995)

    Google Scholar 

  • Obayya, S.A., Rahman, B.M.A., El-Mikati, H.: New full-vectorial numerically efficient propagation algorithm based on the finite element method. J. Lightwave Technol. 18(3), 409–415 (2000)

    Article  ADS  Google Scholar 

  • Rahman, B.M.A., Agrawal, A.: Finite Element Modeling Methods for Photonics. Artech House, Boston (2013)

    MATH  Google Scholar 

  • Rahman, B.M.A., Davies, J.B.: Finite-element solution of integrated optical waveguides. J. Lightwave Technol. 2(5), 682–688 (1984)

    Article  ADS  Google Scholar 

  • Rahman, B.M.A., Davies, J.B.: Vector-H finite element solution of GaAs/GaAlAs rib waveguides. IEE Proc. J. Optoelectron. 132(6), 349–353 (1985)

    Article  Google Scholar 

  • Taflove, A., Hagness, S.C.: Computational Electrodynamics. Artech House, Boston (2005)

    MATH  Google Scholar 

  • Tsuji, Y., Koshiba, M.: A finite element beam propagation method for strongly guiding and longitudinally varying optical waveguides. J. Lightwave Technol. 14(2), 217–222 (1996)

    Article  ADS  Google Scholar 

  • Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

Authors acknowledge, numerical simulations by Dr. Ajanta Bahr, IIT Delhi, India, Mr. Jitendra K. Mishra, ISM, Dhanbad, India, Mr. Yousaf Omar Azabi, City University London, UK, Md. Enayetur Rahman, City University London, UK, and Mr. James Pond, Ph.D., Lumerical Solutions, Inc., Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra L. Hada.

Additional information

This article is part of the Topical Collection on Optical Wave & Waveguide Theory and Numerical Modelling, OWTNM’ 15.

Guest edited by Arti Agrawal, B. M. A. Rahman, Tong Sun, Gregory Wurtz, Anibal Fernandez and James R. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hada, S.L., Rahman, B.M.A. Rigorous analysis of numerical methods: a comparative study. Opt Quant Electron 48, 309 (2016). https://doi.org/10.1007/s11082-016-0579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0579-x

Keywords

Navigation