Skip to main content
Log in

Investigating the optical nand gate using plasmonic nano-spheres

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a coherent perfect absorption (CPA)-type NAND gate based on plasmonic nano particles is proposed. It consists of two plasmonic nano-sphere arrays on the top of two parallel arms with quartz substrate. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-particle waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-spheres and the locations of nano-spheres, an efficient binary optimization method based on the particle swarm optimization (PSO) algorithm is used to design an optimized array of the plasmonic nano-spheres in order to achieve the maximum absorption coefficient in the ‘off’ state and the minimum absorption coefficient in the ‘on’ state. In binary PSO, a group of birds consists a matrix with binary entries, control the presence (‘1’) or the absence (‘0’) of nano spheres in the array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhlaghi, M., Emami, F., Nozhat, N.: TLBO algorithm assisted for designing plasmonic nano particles based absorption coefficient. J. Optoelectron. Adv. Mater. Rapid Commun. 8(9–10), 1–4 (2014a)

    Google Scholar 

  • Akhlaghi, M., Emami, F., Nozhat, N.: Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient. Mod. Opt. 61(13), 1092–1096 (2014b)

    Article  ADS  Google Scholar 

  • Akhlaghi, M., Nozhat, N., Emami, F.: Investigating the optical switch using dimer plasmonic nano-rods. IEEE Trans. Nanotechnol. 13(6), 1172–1175 (2014c)

    Article  ADS  Google Scholar 

  • Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1998)

    Book  Google Scholar 

  • Byun, K.M.: Development of nanostructured plasmonic substrates for enhanced optical biosensing. J. Opt. Soc. Korea 14, 65–76 (2010)

    Article  Google Scholar 

  • Draine, B.T., Flatau, P.J.: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994)

    Article  ADS  Google Scholar 

  • Emami, F., Akhlaghi, M.: Gain ripple decrement of S-band Raman amplifier. J. Photonics Technol. Lett. 24, 1349–1352 (2012)

    Article  ADS  Google Scholar 

  • Farahani, M., Granpayeh, N., Rezvani, M.: Broadband zero reflection plasmonic junctions. J. Opt. Soc. Am. B 29, 1722–1730 (2012)

    Article  ADS  Google Scholar 

  • Forestiere, C., Miano, G., Boriskina, S.V., Negro, L.D.: The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays. Opt. Express 17, 9648–9661 (2009)

    Article  ADS  Google Scholar 

  • Giannini, V., Fernández-Domínguez, A.I., Sonnefraud, Y., Roschuk, T., Fernández-García, R., Maier, S.A.: Controlling light localization and light-matter interactions with nanoplasmonics. Small 6(22), 2498–2507 (2010)

    Article  Google Scholar 

  • Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010)

    Article  ADS  Google Scholar 

  • Harrington, R.F.: Field Computation by Moment Method. IEEE Press (1993)

  • Jin, J.M.: The Finite Element Method in Electromagnetics, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  • Jung, J.: Optimal design of dielectric-loaded surface plasmon polaritons waveguide with genetic algorithm. J. Opt. Soc. Korea 14, 277–281 (2010)

    Article  Google Scholar 

  • Kaur, S., Kaler, R.S.: Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier. J. Opt. Soc. Korea 16, 13–16 (2012)

    Article  Google Scholar 

  • Kern, A.M., Martin, O.J.F.: Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. J. Opt. Soc. Am. A 26(4), 732–740 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Kim, J.H., Kang, B.K., Park, Y.H., Byun, Y.T., Lee, S., Woo, D.H., Kim, S.H.: All-optical AND gate using XPM wavelength converter. J. Opt. Soc. Korea 5, 25–28 (2001)

    Article  Google Scholar 

  • Kim, S., Byun, Y.T., Kim, D.G., Dagli, N., Chung, Y.: Widely tunable coupled-ring reflector laser diode consisting of square ring resonators. J. Opt. Soc. Korea 14, 38–41 (2010)

    Article  Google Scholar 

  • Liang, T.K., Numes, L.R., Tsuchiya, M., Abedin, K.S., Miyazaki, T., Thourhout, D.V., Bogaetrs, W., Dumon, P., Baets, R., Tsang, H.K.: High speed logic gate using twophoton absorption in silicon waveguides. Opt. Commun. 256, 171–174 (2006)

    Article  ADS  Google Scholar 

  • Loke, L.Y., Mengüç, M.P., Nieminen, T.A.: Discrete-dipole approximation with surface interaction: computational toolbox for MATLAB”. J. Quant. Spectrosc. Radiat. Transf. 112(11), 1711–1725 (2011)

    Article  ADS  Google Scholar 

  • Lu, Z., Zhao, W.: Nanoscale electro-optic modulators based on grapheme-slot waveguides. J. Opt. Soc. Am. B 29, 1490–1496 (2012)

    Article  ADS  Google Scholar 

  • Lu, H., Liu, X., Wang, L., Gong, Y., Mao, D.: Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 19, 2910–2915 (2011)

    Article  ADS  Google Scholar 

  • Maier, S.A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.G., Atwater, H.A.: Plasmonics-a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001)

    Article  Google Scholar 

  • Maksymov, I.S.: Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities. Phys. Lett. A 375, 819–921 (2011)

    Google Scholar 

  • Oh, G.Y., Kim, D.G., Choi, Y.W.: All-optical logic gate using waveguide-type SPR with Au/ZnO plasmon stack. In: Proceedings of Opto Electronics and Communication Conference, Japan, 2010, pp. 374–375

  • Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L.: Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9(3), 193–204 (2010)

    Article  ADS  Google Scholar 

  • Setayesh, A., Mirnaziry, S.R., Abrishamian, M.S.: Numerical investigation of tunable band-pass\band-stop plasmonic filters with hollow-core circular ring resonator. J. Opt. Soc. Korea 15, 82–89 (2011)

    Article  Google Scholar 

  • Taflove, A., Brodwin, M.E.: Numerical solution of steady state electromagnetic scattering problems using the time dependent Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 23(8), 623–630 (1975)

    Article  ADS  Google Scholar 

  • Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite Difference Time Domain Method, 2nd edn. Artech House, Norwood (2000)

    Google Scholar 

  • Tuchscherer, P.: Analytic coherent control of plasmon propagation in nanostructures. Opt. Express 17, 14235–14259 (2009)

    Article  ADS  Google Scholar 

  • Wang, G., Lu, H., Liu, X., Mao, D., Duan, L.: Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonator at telecommunication regime. Opt. Express 19, 3513–3518 (2011)

    Article  ADS  Google Scholar 

  • Wei, H., Wang, Z., Tian, X., Kall, M., Xu, H.: Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 1388, 1–5 (2011)

    Article  Google Scholar 

  • Weiland, T.: A discretization method for the solution of Maxwell’s equations for six-component fields. Arch. Elektron. Übertragungstech. 31, 116–120 (1977)

    ADS  Google Scholar 

  • Xu, Q., Lispon, M.: All-optical logic based on silicon micro-ring resonators. Opt. Express 15, 924–929 (2007)

    Article  ADS  Google Scholar 

  • Yabu, T., Geshibo, M., Kitamura, T., Nishida, K., Sawa, S.: All-optical logic gates containing a two-mode nonlinear waveguide. IEEE J. Quantum Electron. 38, 37–46 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Rahmanian Koushkaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmanian Koushkaki, H., Akhlaghi, M. Investigating the optical nand gate using plasmonic nano-spheres. Opt Quant Electron 47, 3637–3645 (2015). https://doi.org/10.1007/s11082-015-0236-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0236-9

Keywords

Navigation