Skip to main content
Log in

Self-frequency shift and nonlinear interaction of equilibrium and pulsating solutions in the presence of linear and nonlinear gain, spectral filtering, and intrapulse Raman scattering

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

A Correction to this article was published on 11 March 2019

Abstract

In this work we study numerically the self-frequency shift of the equilibrium and pulsating solutions in the presence of linear and nonlinear gain, spectral filtering, and intrapulse Raman scattering (IRS). It has been established that the stationary value of the central frequency of solutions, which appears as a result of the collective action of these physical effects, is a linearly increasing function of the Raman parameter γ for the solution of Tsoy and Akhmediev (Phys Lett A 343:17–422, 2005), Tsoy et al. (Phys Rev E 73:036621, 2006), and the quadratic function of γ for the parameters used in Uzunov et al. (Phys Rev E 90:042906, 2014). We have found a complete suppression of the self-frequency shift of the equilibrium and pulsating solutions in the presence of linear and nonlinear gain, spectral filtering, and IRS below and at the point of the Poincare–Andronov–Hopf bifurcation (PAHB) (Uzunov et al. in Phys Rev E 90:042906, 2014). We have numerically observed stable pairs and sequences of equidistant equilibrium solutions and pulsating solutions propagating in the presence of linear and nonlinear gain, spectral filtering, and IRS below and at the point of the PAHB. The pairs and equidistant sequences of pulsating solutions at the point of bifurcation require larger initial separation and exist at smaller distances of propagation than the pairs and equidistant sequences of the equilibrium solutions below the point of bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afanasiev, V.V., Serkin, V.N., Vysloukh, V.A.: Amplification and compression of femtosecond optical solitons in active fibers. Sov. Lightwave Commun. 2, 35–38 (1992)

    Google Scholar 

  • Afanasjev, V.V.: Soliton singularity in the system with nonlinear gain. Opt. Lett. 20, 704–706 (1995)

    Article  ADS  Google Scholar 

  • Afanasjev, V.V., Akhmediev, N.N.: Soliton interaction and bound states in amplified-damped fiber systems. Opt. Lett. 20, 1970–1972 (1995)

    Article  ADS  Google Scholar 

  • Afanasjev, V.V., Akhmediev, N.N.: Soliton interaction in nonequilibrium dynamical systems. Phys. Rev. E 53, 6471–6475 (1996)

    Article  ADS  Google Scholar 

  • Agrawal, G.P.: Nonlinear fiber optics, 3rd edn. Academic Press, San Diego (2001)

    Google Scholar 

  • Akhmediev, N.N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1997)

    Google Scholar 

  • Akhmediev, N.N., Ankiewicz, A., Soto-Crespo, J.M.: Multisoliton solutions of the complex Ginzburg–Landau equation. Phys. Rev. Lett. 79, 4047–4051 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Akhmediev, N., Soto-Crespo, J.M., Town, G.: Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach. Phys. Rev. E 63, 056602 (2001)

    Article  ADS  Google Scholar 

  • Akhmediev, N., Soto-Crespo, J.M., Grelu, P.: Vibrating and shaking soliton pairs in dissipative systems. Phys. Lett. A 364, 413–416 (2007)

    Article  ADS  Google Scholar 

  • Bélanger, P.-A., Gagnon, L., Pare, C.: Solitary pulses in an amplified nonlinear dispersive medium. Opt. Lett. 14, 943–945 (1989)

    Article  ADS  Google Scholar 

  • Blow, K.J., Doran, N.J., Wood, D.: Suppression of the soliton self-frequency shift by bandwidth-limited amplification. J. Opt. Soc. Am. B 5, 1301–1304 (1988)

    Article  ADS  Google Scholar 

  • Chang, W., Ankiewicz, A., Akhmediev, N.N., Soto-Crespo, J.M.: Creeping solitons in dissipative systems and their bifurcations. Phys. Rev. E 76, 016607 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  • Conte, R., Musette, M.: Exact solitons to the complex Ginzburg–Landau equation of non-linear optics. Pure Appl. Opt. 4, 315–320 (1995)

    Article  ADS  Google Scholar 

  • Conte, R., Musette, M.: Solitary waves of nonlinear nonintegrable equations. In: Akhmediev, N., Ankievicz, A. (eds.) Dissipative Solitons. Springer, Berlin (2005)

    Google Scholar 

  • Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 854–1112 (1993)

    Article  ADS  Google Scholar 

  • Gerdjikov, V.S., Uzunov, I.M., Evstatiev, E.G., Diankov, G.L.: The nonlinear Schrödinger and N-soliton interaction. Generalization of Karpman–Solov’ev approach. Phys. Rev. E 55, 6039–6060 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  • Gorshkov, K.A. Ph.D. thesis, Institute of Applied Physics, Gorky, (1981) unpublished

  • Gorshkov, K.A., Ostrovsky, L.A.: Interactions of solitons in nonintegrable systems: direct perturbation method and applications. Phys. D 3, 428–438 (1981)

    Article  MATH  Google Scholar 

  • Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  • Haus, H.A., Fujimoto, J.G., Ippen, E.P.: Structures for additive pulse mode locking. J. Opt. Soc. Am. B 8, 2068–2076 (1991)

    Article  ADS  Google Scholar 

  • Heidt, A.: Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers. J. Lightwave Technology 27(18), 3984–3991 (2009)

    Article  ADS  Google Scholar 

  • Karpman, V.I., Solov’ev, V.V.: A perturbation theory for soliton systems. Phys. D 3, 142–164 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Kärtner, F.X., Au, J.A., Keller, U.: Mode-locking with slow and fast saturable absorbers—what‘s the difference. IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998)

    Article  Google Scholar 

  • Kodama, Y., Wabnitz, S.: Reduction and suppression of soliton interactions by bandpass filters. Opt. Lett. 18, 1311–1313 (1993)

    Article  ADS  Google Scholar 

  • Kodama, Y., Romagnoli, M., Wabnitz, S.: Soliton stability and interactions in fibre lasers. Electron. Lett. 28, 1981–1982 (1992)

    Article  Google Scholar 

  • Latas, S.C.V., Ferreira, M.F.S.: Soliton propagation in the presence of intrapulse Raman scattering and nonlinear gain. Opt. Commun. 251, 415–422 (2005)

    Article  ADS  Google Scholar 

  • Malomed, B.A.: Bound solitons in the nonlinear Schrödinger–Ginzburg–Landau equation. Phys. Rev. A 44, 6954–6960 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  • Mancas, S.C., Choudhury, S.R.: A novel variational approach to pulsating soliitons in the cubic–quintic Ginzburg–Landau equation. Theor. Math. Phys. 152(2), 339–355 (2007)

    Article  MathSciNet  Google Scholar 

  • Mancas, S.C., Choudhury, S.R.: Spatiotemporal structure of pulsating solitons in the cubic–quintic Ginzburg–Landau equation: a novel variational formulation. Chaos Solitons Fractals 40, 91–105 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Matsumoto, M., Ikeda, H., Uda, T., Hasegawa, A.: Stable soliton transmission in the system with nonlinear gain. J. Lightwave Technol. 13, 658–665 (1995)

    Article  ADS  Google Scholar 

  • Mitschke, F.M., Mollenauer, L.F.: Discovery of the soliton self frequency shift. Opt. Lett. 11, 659–661 (1986)

    Article  ADS  Google Scholar 

  • Nakazawa, M., Kurokawa, K., Kubota, H., Yamada, E.: Observation of the trapping of an optical soliton by adiabatic gain narrowing and its shape. Phys. Rev. Lett. 65, 1881–1884 (1990)

    Article  ADS  Google Scholar 

  • Pereira, N.R., Stenflo, L.: Nonlinear Schrodinger equation including growth and damping. Phys. Fluids 20, 1733–1743 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Serkin, V.N.: Colored envelope solitons in optical fibers. Sov. Tech. Phys. Lett. 13, 320–321 (1987)

    Google Scholar 

  • Soto-Crespo, J.M., Akhmediev, N., Afanasjev, V.V.: Stability of the pulselike solutions of the quintic complex Ginzburg–Landau equation. J. Opt. Soc. Am. B 13, 1439–1449 (1996)

    Article  ADS  Google Scholar 

  • Soto-Crespo, J.M., Akhmediev, N., Afanasjev, V.V., Wabnitz, S.: Pulse solutions of the quintic complex Ginzburg–Landau equation in the case of normal dispersion. Phys. Rev. E 55, 4783–4796 (1997)

    Article  ADS  Google Scholar 

  • Soto-Crespo, J.M., Akhmediev, N., Ankiewicz, A.: Pulsating, creeping, and erupting solitons in dissipative systems. Phys. Rev. Lett. 85, 2937–2940 (2000)

    Article  ADS  Google Scholar 

  • Soto-Crespo, J.M., Grapinet, M., Grelu, P., Akhmediev, N.: Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser. Phys. Rev. E 70, 066612 (2004)

    Article  ADS  Google Scholar 

  • Tsoy, E., Akhmediev, N.: Bifurcations from stationary to pulsating solitons in the cubic quintic complex Ginzburg Landau equation. Phys. Lett. A 343, 417–422 (2005)

    Article  MATH  ADS  Google Scholar 

  • Tsoy, E., Ankiewicz, A., Akhmediev, N.: Dynamical models for dissipative localized waves of the complex Ginzburg Landau equation. Phys. Rev. E 73, 036621 (2006)

    Article  ADS  Google Scholar 

  • Uzunov, I.M.: Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification. Phys. Rev. E 82, 066603 (2010)

    Article  ADS  Google Scholar 

  • Uzunov, I.M., Arabadzhiev, T.N.: Suppression of the soliton self-frequency shift by BLA. Phys. Rev. E 84, 026607 (2011)

    Article  ADS  Google Scholar 

  • Uzunov, I.M., Arabadzhiev, T.N., Georgiev, Z.D.: Influence of higher-order effects on pulsating solutions, stationary solutions and moving fronts in the presence of linear and nonlinear gain/loss and spectral filtering. Opt. Fiber Technol. doi:10.1016/j.yofte.2015.04.003 (2015)

  • Uzunov, I.M., Muschall, R., Gölles, M., Lederer, F., Wabnitz, S.: Effect of nonlinear gain and filtering on soliton interactions. Opt. Commun. 118, 577–580 (1995)

    Article  ADS  Google Scholar 

  • Uzunov, I.M., Gerdjikov, V.S., Gölles, M., Lederer, F.: On the description of N-soliton interaction in optical fibers. Opt. Commun. 125, 237–242 (1996)

    Article  ADS  Google Scholar 

  • Uzunov, I.M., Georgiev, Z.D., Arabadzhiev, T.N.: Influence of intrapulse Raman scattering on the stationary pulses in the presence of linear and nonlinear gain as well as spectral filtering. Phys. Rev. E 90, 042906 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todor N. Arabadzhev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzunov, I.M., Arabadzhev, T.N. & Georgiev, Z.D. Self-frequency shift and nonlinear interaction of equilibrium and pulsating solutions in the presence of linear and nonlinear gain, spectral filtering, and intrapulse Raman scattering. Opt Quant Electron 47, 2969–2981 (2015). https://doi.org/10.1007/s11082-015-0184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0184-4

Keywords

Navigation