Skip to main content
Log in

Novel fast photonic crystal multiplexer-demultiplexer switches

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a 3 × 1 Multiplexer/Demultiplexer (MUX/DEMUX) Photonic Crystal (PhC) based structure is presented. This is achieved by carefully considering the coupling length of the propagating wave and accurately engineering the geometrical design of the microcavities. The design is highly selective, such that, a microcavity embedded between two waveguides selects a particular wavelength to couple from one waveguide into an adjacent waveguide. The numerical technique used for the designs throughout this paper is the Complex Envelope Alternating Direction Implicit Finite Difference Time Domain (CE-ADI-FDTD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PhCs:

Photonic crystals

PBG:

Photonic bandgap

MUX/DEMUX:

Multiplexer/demultiplexer

CE-ADI-FDTD:

Complex envelope-alternating direction implicit-finite difference time domain

References

  • Berenger J.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comp. Phys. 114(2), 185–200 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Centeno E., Guizal B., Felbacq D.: Multiplexing and demultiplexing with photonic crystals. J. Opt. A. Pure Appl. Opt 1(5), L10–L13 (1999)

    Article  ADS  Google Scholar 

  • Chien F., Hsu Y., Hsieh W., Cheng S.: Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides. Opt. Express 12(6), 1119–1125 (2004)

    Article  ADS  Google Scholar 

  • Chien F., Cheng S., Hsu Y., Hsieh W.: Dual-band multiplexer/demultiplexer with photonic-crystal waveguide couplers for bidirectional communications. Opt. Commun. 266(2), 592–597 (2006)

    Article  ADS  Google Scholar 

  • Chong H., Rue R.D.L.: Tuning of photonic crystal waveguide microcavity by thermo optic effect. IEEE Photon. Technol. Lett. 16, 1528–1530 (2004)

    Article  ADS  Google Scholar 

  • Costa R., Melloni A., Martinelli M.: Bandpass resonant filters in photonic-crystal waveguides. IEEE Photon. Technol. Lett. 15, 401–403 (2003)

    Article  ADS  Google Scholar 

  • Fan S., Villeneuve P., Joannopoulos J., Khan M., Manolatou C., Haus H.: Theoretical analysis of channel drop tunnelling processes. Phys. Rev. B 59(24), 15882–15892 (1999)

    Article  ADS  Google Scholar 

  • Haxha S., Belhadj W., AbdelMalek F., Bouchriha H.: Analysis of wavelength demultiplexer based on photonic crystals. IEE Proc. Optoelectron 152, 193–198 (2005)

    Article  Google Scholar 

  • Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, NJ (1995)

    MATH  Google Scholar 

  • Lopez-Villegas, J., Vidal, N.: Modeling and minimization of discretization error in one-dimensional PMLs using FDTD, Computational Electromagnetics in Time-Domain, CEM-TD 2007, Workshop on, 1–4 (2007)

  • Mekis A., Meier M., Dodabalapur A., Slusher R.E., Joannopoulos J.D.: Lasing mechanism in twodimensional photonic crystal lasers. Appl. Phys. A. Mater. Sci. Process. 69, 111–114 (1999)

    Article  ADS  Google Scholar 

  • Mur, G.: Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981)

    Google Scholar 

  • Nagpal Y., Sinha R.: Modeling of photonic band gap waveguide couplers. Microw. Opt. Technol. Lett. 43, 47–50 (2004)

    Article  Google Scholar 

  • Notomi M., Shinya A., Mitsugi S., Kuramochi E., Ryu H.-Y.: Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004)

    Article  ADS  Google Scholar 

  • Pinto D., Obayya S.S.A.: Improved complex-envelope alternating-direction-implicit finite-difference- time-domain method for photonic-bandgap cavities. IEEE J. Lightwave Technol. 25, 440–447 (2007)

    Article  ADS  Google Scholar 

  • Pistono E., Ferrari P., Duvillaret L., Coutaz J.L., Jrad A.: Tunable bandpass microwave filters based on defect commandable photonic bandgap waveguides. Electron. Lett. 39, 1131–1133 (2003)

    Article  Google Scholar 

  • Rao H., Scarmozzino R., Osgood R.M.: An improved adi-fdtd method and its application to photonic simulations. IEEE Photon. Technol. Lett. 14, 477–479 (2002)

    Article  ADS  Google Scholar 

  • Selim R., Pinto D., Obayya S.S.A.: Improved design of photonic crystal based multiplexer/demultiplexer devices. IET Optoelectron. 4, 165–173 (2010)

    Article  Google Scholar 

  • Shanhui F., Villeneuve P.R., Joannopoulos J.D.: Channel drop tunneling through localized states. Phys. Rev. Lett. 80, 960–963 (1998)

    Article  ADS  Google Scholar 

  • Shi Y., Daoxin D., He S.: Novel ultracompact triplexer based on photonic crystal waveguides. IEEE Photon. Technol. Lett. 18, 2293–2295 (2006)

    Article  ADS  Google Scholar 

  • Sivalingam K., Subramaniam S.: Optical WDM Networks Principles and Practice. Kluwer Academic Publishers, New York (2002)

    Book  Google Scholar 

  • Taflove A., Hagness S. et al.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (1995)

    MATH  Google Scholar 

  • Villeneuve P.R., Fan S., Joannopoulos J.D.: Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency. Phys. Rev. B 54, 7837–7842 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. A. Obayya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selim, R., Pinto, D. & Obayya, S.S.A. Novel fast photonic crystal multiplexer-demultiplexer switches. Opt Quant Electron 42, 425–433 (2011). https://doi.org/10.1007/s11082-011-9438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-011-9438-y

Keywords

Navigation