Skip to main content
Log in

Optimal placement of the multiple magnetic sources for the MHD flow in a rectangular duct

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we consider the optimal control of the fully developed, steady, laminar, unidirectional flow of an incompressible electrically conducting fluid in a long channel of rectangular cross-section (duct). The magnetic field is generated by thin wires carrying electric current and placed along, below and/or above the channel, forming magnetic sources at the bottom and top walls of the duct. Control problem is designed to find the optimal placement of magnetic sources by using the axis coordinates of the sources as control variables to achieve the desired fluid behavior. Optimality conditions are obtained via adjoint method following discretize-then-optimize procedure. Optimization is performed by a gradient-based algorithm with bounds on the controls. The coupled system of magnetohydrodynamic (MHD) flow equations is solved by using FEM with quadratic elements. Control simulations are conducted by one, two and multiple sources for various values of the Hartmann number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali F, Sheikh NA, Khan I, Saqib M (2017) Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: a fractional model. J Magn Magn Mater 423:327–336

    Article  Google Scholar 

  • Allendes A, Otárola E, Rankin R, Salgado AJ (2018) An a posteriori error analysis for an optimal control problem with point sources. ESAIM: Math Model Numer Anal 52(5):1617–1650

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee MK, Datta A, Ganguly R (2010) Magnetic drug targeting in partly occluded blood vessels using magnetic microspheres. J Nanotechnol Eng Med 1(4):041005

    Article  Google Scholar 

  • Bao G, Ammari H, Fleming JL (2002) An inverse source problem for Maxwell’s equations in magnetoencephalography. SIAM J Appl Math 62(4):1369–1382

    Article  MathSciNet  MATH  Google Scholar 

  • Caselli G (2020) Optimal control of an eddy current problem with a dipole source. J Math Anal Appl 489(1):124152

    Article  MathSciNet  MATH  Google Scholar 

  • De los Reyes JC (2015) Numerical PDE-constrained optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  • Farrell PE, Ham DA, Funke SW, Rognes ME (2013) Automated derivation of the adjoint of high-level transient finite element programs. SIAM J Sci Comput 35(4):369–393

    Article  MathSciNet  MATH  Google Scholar 

  • Ganguly R, Gaind AP, Sen S, Puri IK (2005) Analyzing ferrofluid transport for magnetic drug targeting. J Magn Magn Mater 289:331–334

    Article  Google Scholar 

  • Griesse R, Kunisch K (2006) Optimal control for a stationary MHD system in velocity–current formulation. SIAM J Control Optim 45(5):1822–1845

    Article  MathSciNet  MATH  Google Scholar 

  • Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2008) Optimization with PDE constraints, vol 23. Springer, Berlin

    MATH  Google Scholar 

  • Logg A, Mardal KA, Wells G (2012) Automated solution of differential equations by the finite element method. Springer, Berlin

    Book  MATH  Google Scholar 

  • Loukopoulos V, Tzirtzilakis E (2004) Biomagnetic channel flow in spatially varying magnetic field. Int J Eng Sci 42(5–6):571–590

    Article  MathSciNet  MATH  Google Scholar 

  • Mousavi SM, Farhadi M, Sedighi K (2016) Effect of non-uniform magnetic field on biomagnetic fluid flow in a 3d channel. Appl Math Model 40(15–16):7336–7348

    Article  MathSciNet  MATH  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization, Springer series in operations research. Springer, Berlin

    Google Scholar 

  • Papadopoulos PK (2010) Biomagnetic fluid flow in the presence of a line dipole. Int J Numer Methods Heat Fluid Flow 20(3):298–311

    Article  MathSciNet  Google Scholar 

  • Saha S, Chakrabarti S (2013) Impact of magnetic field strength on magnetic fluid flow through a channel. Int J Eng Res Technol 2(7):1–8

    Google Scholar 

  • Senel P, Tezer-Sezgin M (2016) DRBEM solutions of Stokes and Navier–Stokes equations in cavities under point source magnetic field. Eng Anal Boundary Elem 64:158–175

    Article  MathSciNet  MATH  Google Scholar 

  • Senel P, Tezer-Sezgin M (2018) Convective flow of blood in square and circular cavities. Analele Universitatii Ovidius Constanta-Seria Matematica 26(2):209–230

    Article  MathSciNet  MATH  Google Scholar 

  • Shaw S, Murthy P (2010) Magnetic drug targeting in the permeable blood vessel—the effect of blood rheology. J Nanotechnol Eng Med 1(2):021001

    Article  Google Scholar 

  • Singh RJ, Gohil TB (2019) The numerical analysis on the variation of electric potential, electric current and Lorentz force with its influence on buoyancy-driven conjugate heat transfer and fluid flow using OpenFOAM. Fusion Eng Des 148:111300

    Article  Google Scholar 

  • Tezer-Sezgin M, Bozkaya C, Türk Ö (2013) BEM and FEM based numerical simulations for biomagnetic fluid flow. Eng Anal Bound Elem 37(9):1127–1135

    Article  MathSciNet  MATH  Google Scholar 

  • Tröltzsch F (2010) Optimal control of partial differential equations: theory, methods, and applications, vol 112. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Tzirtzilakis E (2005) A mathematical model for blood flow in magnetic field. Phys Fluids 17(7):077103

    Article  MathSciNet  MATH  Google Scholar 

  • Tzirtzilakis E, Xenos M (2013) Biomagnetic fluid flow in a driven cavity. Meccanica 48(1):187–200

    Article  MathSciNet  MATH  Google Scholar 

  • Tzirtzilakis E, Sakalis V, Kafoussias N, Hatzikonstantinou P (2004) Biomagnetic fluid flow in a 3d rectangular duct. Int J Numer Meth Fluids 44(12):1279–1298

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cansu Evcin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evcin, C., Uğur, Ö. & Tezer-Sezgin, M. Optimal placement of the multiple magnetic sources for the MHD flow in a rectangular duct. Optim Eng 24, 2855–2885 (2023). https://doi.org/10.1007/s11081-023-09796-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-023-09796-x

Keywords

Mathematics Subject Classification

Navigation