Skip to main content
Log in

Second-order partitioned method and adaptive time step algorithms for the nonstationary Stokes-Darcy equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a second-order partitioned method with multiple-time-step technique for the nonstationary Stokes-Darcy model. This method allows different time steps in different subdomains and improves the accuracy by the time filters. Besides, by designing new error estimate and time step adjustment strategy, we extend this method to variable timestep and develop single and double adaptive algorithms. Constant and variable time step tests are given to confirm the theoretical analysis and illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 3
Algorithm 4
Algorithm 1
Algorithm 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximation for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 47, 4239–4256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Layton, W. J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Vassilev, D., Yotov, I.: Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput. 31, 3661–3684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Discacciati, M., Quarteroni, A., Valli, A.: Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin-robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition. Numer. Math. 117, 601–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel robin-robin domain decomposition method for the Stokes-Darcy system. SIAM J. Numer. Anal. 49, 1064–1084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, Y., Gunzburger, M., He, X., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comput. 83, 1617–1644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. He, X., Li, J., Lin, Y., Ming, J.: A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition. SIAM J. Sci. Comput. 37, S264–S290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qiu, C., He, X., Li, J., Lin, Y.: A domain decomposition method for the time-dependent Navier-Stokes-Darcy model with Beavers-Joseph interface condition and defective boundary condition. J. Comput. Phys. 411(109400), 1–25 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Mu, M., Xu, J.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zuo, L., Hou, Y.: A decoupling two-grid algorithm for the mixed Stokes-Darcy model with the Beavers-Joseph interface condition. Numer. Methods Partial Differ. Eqns. 30, 1066–1082 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, T., Yuan, J.: Two novel decoupling algorithms for the steady Stokes-Darcy model based on two-grid discretizations. Discret. Contin. Dyn. Syst.-Ser. B 19, 849–865 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Jia, H., Jia, H., Huang, Y.: A modified two-grid decoupling method for the mixed Navier-Stokes/Darcy Model. Comput. Math. Appl. 72, 1142–1152 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hou, Y.: Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model. Appl. Math. Lett. 57, 90–96 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu, J., Zheng, H., Shi, F., Zhao, R.: Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discret. Contin. Dyn. Syst.-Ser. B 24, 387–402 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comput. 79, 707–731 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with the Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 51, 813–839 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shan, L., Zheng, H., Layton, W.J.: A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model. Numer. Methods Partial Differ. Eqns. 29, 549–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, R., Li, J., Chen, Z., Cao, Y.: A stabilized finite element method based on two local Guass integrations for a coupled Stokes-Darcy problem. J. Comput. Appl. Math. 292, 92–104 (2016)

    Article  MathSciNet  Google Scholar 

  21. Li, R., Li, J., He, X., Chen, Z.: A stabilized finite volume element method for a coupled Stokes-Darcy problem. Appl. Numer. Math. 133, 2–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nafa, K.: Equal order approximations enriched with bubbles for coupled Stokes-Darcy problem. J. Comput. Appl. Math. 270, 275–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pacquaut, G., Bruchon, J., Moulin, N., Drapier, S.: Combining a level-set method and a mixed stabilized P1/P1 formulation for coupling Stokes-Darcy flows. Int. J. Numer. Methods Fluids 69, 459–480 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rui, H., Zhang, R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Engrg. 198, 2692–2699 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y., Hou, Y., Li, R.: A stabilized finite volume method for the evolutionary Stokes-Darcy system. Comput. Math. Appl. 75, 596–613 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long-time accurate second-order methods for Stokes-Darcy system. SIAM J. Numer. Anal. 51, 2563–2584 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Layton, W., Tran, H., Xiong, X.: Long time stability of four methods for splitting the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems. J. Comput. Appl. Math. 236, 3198–3217 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Layton, W., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51, 248–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, W., Gunzburger, M., Sun, D., Wang, X.: An efficient and long-time accurate third-order algorithm for the Stokes-Darcy system. Numer Math. 134, 857–879 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Connors, J.M., Howell, J.S.: A fluid-fluid interaction method using decoupled subproblems and differing time steps. Numer. Methods Partial Differ. Eqns. 28, 1283–1308 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rybak, I., Magiera, J.: A multiple-time-step technique for coupled free flow and porous medium systems. J. Comput. Phys. 272, 327–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Y., Hou, Y.: A second-order partitioned method with different subdomain time steps for the evolutionary Stokes-Darcy system. Math. Method Appl. Sci. 41, 2178–2208 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, J., Rui, H., Cao, Y.: A partitioned method with different time steps for coupled Stokes and Darcy flows with transport. Int. J. Numer. Anal. Mod. 16, 463–498 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Guzel, A., Layton, W.: Analysis of the effect of time filters on the implicit method: increased accuracy and improved stability. arXiv:1708.06306 [math.NA] (2017)

  35. Guzel, A., Layton, W.: Time filters increase accuracy of the fully implicit method. BIT Numer. Math. 58, 301–315 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. DeCaria, V., Layton, W., Zhao, H.: A time-accurate, adaptive discretization for fluid flow problems. Int. J. Numer. Anal. Mod. 17, 254–280 (2020)

    MathSciNet  MATH  Google Scholar 

  37. DeCaria, V., Guzel, A., Layton, W., Li, Y.: A new embedded variable stepsize, variable order family of low computational complexity. arXiv:1810.06670 [math.NA] (2018)

  38. Qin, Y., Hou, Y.: The time filter for the non-stationary coupled Stokes/Darcy model. Appl. Numer. Math. 146, 260–275 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, Y., Hou, Y., Layton, W., Zhao, H.: Adaptive partitioned methods for the time-accurate approximation of the evolutionary Stokes–Darcy system. Comput. Methods Appl. Mech. Engrg. 364, 112923 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Layton, W. J.: Introduction to the numerical analysis of incompressible viscous flows, Society for Industrial and Applied Mathematics (SIAM) (2008)

  41. Layton, W.J., Pei, W., Qin, Y., Trenchea, C.: Analysis of the variable step method of Dahlquist, Liniger and Nevanlinna for fluid flow. arXiv:2001.08640 [math.NA] (2020)

  42. Hecht, F., Le Hyaric, A., Ohtsuka, K., Pironneau, O.: FreeFem++, Finite elements software, http://www.freefem.org/ff++/

Download references

Acknowledgements

We would like to thank the anonymous referees for their helpful comments and suggestion for the improvement of the paper.

Funding

This work was supported by National Natural Science Foundation of China(NSFC) grant 12001347 and the Scientific Research Program Funded by the Shaanxi Provincial Education Department program 21JP019.

Author information

Authors and Affiliations

Authors

Contributions

Yongshuai Wang: methodology, formal analysis, program, investigation, writing—original draft. Yi Qin: formal analysis, writing—review and editing, validation, funding acquisition. All authors carefully reviewed the manuscript.

Corresponding author

Correspondence to Yongshuai Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A. Proof of Theorem 3.4

Appendix: A. Proof of Theorem 3.4

Proof

Since \({\xi _{u}^{0}}=0\), \({\xi _{u}^{1}}=0\), and using (65), we have \(b(\xi _{u}^{n+1},q_{h})=0,~\forall q_{h}\in Q_{h}\). Setting \(\mathbf {v}_{h}=\xi _{u}^{n+1}\), \(q_{h}=\xi _{p}^{n+1}\) in (64), (65), and using (29) and (30), we can get

$$ \begin{array}{@{}rcl@{}} &&\frac{\|\xi_{u}^{n+1}\|_{0}^{2}+\|2\xi_{u}^{n+1}-{\xi_{u}^{n}}\|_{0}^{2}}{4{{\Delta} t}}-\frac{\|{\xi_{u}^{n}}\|_{0}^{2}+\|2{\xi_{u}^{n}}-\xi_{u}^{n-1}\|_{0}^{2}}{4{{\Delta} t}} \end{array} $$
(94)
$$ \begin{array}{@{}rcl@{}} &&+\frac{\|\xi_{u}^{n+1}-2{\xi_{u}^{n}}+\xi_{u}^{n-1}\|_{0}^{2}}{4{{\Delta} t}}+\frac{3\nu\|\nabla\xi_{u}^{n+1}\|_{0}^{2}+\nu\|{\nabla\xi_{u}^{n}}\|_{0}^{2}}{4} \\&&-\frac{3\nu\|{\nabla\xi_{u}^{n}}\|_{0}^{2}+\nu\|\nabla\xi_{u}^{n-1}\|_{0}^{2}}{4}+\frac{\nu\|\nabla\left( \xi_{u}^{n+1}-{\xi_{u}^{n}}\right)\|_{0}^{2}}{2} \\&&+\frac{\nu\|\nabla\left( \xi_{u}^{n+1}+\xi_{u}^{n-1}\right)\|_{0}^{2}}{4} \\&=&\left( B\left[\mathbf{f}_{1}^{n+1}\right]-\mathbf{f}_{1}^{n+1},\xi_{u}^{n+1}\right)_{{\Omega}_{f}}+\bigg(\frac{A\left[\tilde{\mathbf{u}}^{n+1}\right]}{{{\Delta} t}}-B\left[\mathbf{u}_{t}^{n+1}\right],\xi_{u}^{n+1}\bigg)_{{\Omega}_{f}} \\&&-g{\int}_{\mathbb{I}}\left( B\left[\tilde{\phi}^{n+1}\right]-(1+\omega_{n})\phi_{h}^{n_{k}}+\omega_{n}\phi_{h}^{n_{k-1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl. \end{array} $$
(95)

Setting \(\psi _{h}=\xi _{\phi }^{n_{k+1}}\) in (66), we obtain

$$ \begin{array}{@{}rcl@{}} &&gs_{0}\bigg(\frac{\|\xi_{\phi}^{n_{k+1}}\|_{0}^{2}+\|2\xi_{\phi}^{n_{k+1}}-\xi_{\phi}^{n_{k}}\|_{0}^{2}}{4{{\Delta} s}}-\frac{\|\xi_{\phi}^{n_{k}}\|_{0}^{2}+\|2\xi_{\phi}^{n_{k}}-\xi_{\phi}^{n_{k-1}}\|_{0}^{2}}{4{{\Delta} s}} \\&&+\frac{\|\xi_{\phi}^{n_{k+1}}-2\xi_{\phi}^{n_{k}}+\xi_{\phi}^{n_{k-1}}\|_{0}^{2}}{4{{\Delta} s}}\bigg)+\frac{3g\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2}+g\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k}}\|_{0}^{2}}{4} \\&&-\frac{3g\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k}}\|_{0}^{2}+g\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k-1}}\|_{0}^{2}}{4}+\frac{g\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}-\xi_{\phi}^{n_{k}}\right)\|_{0}^{2}}{2} \\&&+\frac{g\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}+\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2}}{4} \\&=&g\left( B\left[f_{2}^{n_{k+1}}\right]-f_{2}^{n_{k+1}},\xi_{\phi}^{n_{k+1}}\right)_{{\Omega}_{p}}+gs_{0}\bigg(\frac{A\left[\tilde{\phi}^{n_{k+1}}\right]}{{{\Delta} s}}-B\left[\phi_{t}^{n_{k+1}}\right],\xi_{\phi}^{n_{k+1}}\bigg)_{{\Omega}_{p}} \\&&+g{\int}_{\mathbb{I}}\xi_{\phi}^{n_{k+1}}\left( B\left[\tilde{\mathbf{u}}^{n_{k+1}}\right]-\left( 2\mathbf{u}_{h}^{n_{k}}-\mathbf{u}_{h}^{n_{k-1}}\right)\right)\cdot\mathbf{n}_{f}dl. \end{array} $$
(96)

Next, we estimate the first two terms on the right hand side of (95) and (96) by using the Cauchy-Schwarz inequality, Young’s inequality, Poincar\(\acute {\mathrm {e}}\) inequality, and Lemmas 3.2, 3.3 as follows

$$ \begin{array}{@{}rcl@{}} \left( B\left[\mathbf{f}_{1}^{n+1}\right]-\mathbf{f}_{1}^{n+1},\xi_{u}^{n+1}\right)_{{\Omega}_{f}}&\le&\frac{39}{2\nu}\|B\left[\mathbf{f}_{1}^{n+1}\right]-\mathbf{f}_{1}^{n+1}\|_{-1}^{2}+\frac{\nu}{78}\|\nabla\xi_{u}^{n+1}\|_{0}^{2} \\ &\le& C{{\Delta} t}^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\mathbf{f}_{1,tt}(t)\|_{-1}^{2}dt+\frac{\nu}{78}\|\nabla\xi_{u}^{n+1}\|_{0}^{2}.~~~~~~~~~~~~ \end{array} $$
(97)
$$ \begin{array}{@{}rcl@{}} &&\bigg(\frac{A\left[\tilde{\mathbf{u}}^{n+1}\right]}{{{\Delta} t}}-B\left[\mathbf{u}_{t}^{n+1}\right],\xi_{u}^{n+1}\bigg)_{{\Omega}_{f}} \\&\le&\frac{39{C_{p}^{2}}}{2\nu}\bigg\|\frac{A\left[\tilde{\mathbf{u}}^{n+1}\right]}{{{\Delta} t}}-B\left[\mathbf{u}_{t}^{n+1}\right]\bigg\|_{0}^{2}+\frac{\nu}{78}\|\nabla\xi_{u}^{n+1}\|_{0}^{2} \\&\le&\frac{39{C_{p}^{2}}}{\nu}\bigg\|\frac{A\left[\tilde{\mathbf{u}}^{n+1}\right]}{{{\Delta} t}}-\mathbf{u}_{t}^{n+1}\bigg\|_{0}^{2}+\frac{39{C_{p}^{2}}}{\nu}\|\mathbf{u}_{t}^{n+1}-B\left[\mathbf{u}_{t}^{n+1}\right]\|_{0}^{2}+\frac{\nu}{78}\|\nabla\xi_{u}^{n+1}\|_{0}^{2} \\&\le&\frac{C}{{{\Delta} t}}{\int}_{t^{n-1}}^{t^{n+1}}\|\left( {P_{h}^{U}}-I\right)\mathbf{u}_{t}(t)\|_{0}^{2}dt+C{{\Delta} t}^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\mathbf{u}_{ttt}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\mathbf{u}_{tt}(t)\|_{0}^{2}dt+\frac{\nu}{78}\|\nabla\xi_{u}^{n+1}\|_{0}^{2}. \end{array} $$
(98)
$$ \begin{array}{@{}rcl@{}} {g}\left( B\left[f_{2}^{n_{k+1}}\right]-f_{2}^{n_{k+1}},\xi_{\phi}^{n_{k+1}}\right)_{{\Omega}_{p}}\!&\le&\!\frac{75g}{4k_{\min}}\|B\left[f_{2}^{n_{k+1}}\right]-f_{2}^{n_{k+1}}\|_{-1}^{2}+\frac{g}{75}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2} \\\!&\le&\! C{\Delta} s^{3}{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|f_{2,tt}(t)\|_{-1}^{2}dt+\frac{g}{75}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2}.~~~~~~~~~~ \end{array} $$
(99)
$$ \begin{array}{@{}rcl@{}} && gs_{0}\left( \frac{A\left[\tilde{\phi}^{n_{k+1}}\right]}{{{\Delta} s}}-B\left[\phi_{t}^{n_{k+1}}\right],\xi_{\phi}^{n_{k+1}}\right)_{{\Omega}_{p}} \\&\le&\frac{75g{s_{0}^{2}}\tilde{C}_{p}^{2}}{4k_{\min}}\bigg\|\frac{A\left[\tilde{\phi}^{n_{k+1}}\right]}{{{\Delta} s}}-B\left[\phi_{t}^{n_{k+1}}\right]\bigg\|_{-1}^{2}+\frac{g}{75}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2} \\&\le&\frac{75g{s_{0}^{2}}\tilde{C}_{p}^{2}}{2k_{\min}}\bigg\|\frac{A\left[\tilde{\phi}^{n_{k+1}}\right]}{{{\Delta} s}}-\phi_{t}^{n_{k+1}}\bigg\|_{0}^{2} +\frac{75g{s_{0}^{2}}\tilde{C}_{p}^{2}}{2k_{\min}}\|\phi_{t}^{n_{k+1}}-B\left[\phi_{t}^{n_{k+1}}\right]\|_{0}^{2}\\&&+\frac{g}{75}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2} \\&\le&\frac{C}{{{\Delta} s}}{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|\left( {P_{h}^{U}}-I\right)\phi_{t}(t)\|_{0}^{2}dt+C{{\Delta} s}^{3}{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|\phi_{ttt}(t)\|_{0}^{2}dt \\&&+C{{\Delta} s}^{3}{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|\phi_{tt}(t)\|_{0}^{2}dt+\frac{g}{75}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2}. \end{array} $$
(100)

Note that the following equalities hold for the interface terms on the right hand side of (95) and (96)

$$ \begin{array}{@{}rcl@{}} &&-g{\int}_{\mathbb{I}}\left( B\left[\tilde{\phi}^{n+1}\right]-(1+\omega_{n})\phi_{h}^{n_{k}}+\omega_{n}\phi_{h}^{n_{k-1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl \\&=&-g{\int}_{\mathbb{I}}\left( B\left[\tilde{\phi}^{n+1}\right]-(1+\omega_{n})\tilde{\phi}^{n_{k}}+\omega_{n}\tilde{\phi}^{n_{k-1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl \\&&-g{\int}_{\mathbb{I}}\left( (1+\omega_{n})\xi_{\phi}^{n_{k}}-\omega_{n}\xi_{\phi}^{n_{k-1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl, \end{array} $$
(101)
$$ \begin{array}{@{}rcl@{}} && g{\int}_{\mathbb{I}}\xi_{\phi}^{n_{k+1}}\left( B\left[\tilde{\mathbf{u}}^{n_{k+1}}\right]-\left( 2\mathbf{u}_{h}^{n_{k}}-\mathbf{u}_{h}^{n_{k-1}}\right)\right)\cdot\mathbf{n}_{f}dl \\&=&g{\int}_{\mathbb{I}}\xi_{\phi}^{n_{k+1}}\left( B\left[\tilde{\mathbf{u}}^{n_{k+1}}\right]-(2\tilde{\mathbf{u}}^{n_{k}}-\tilde{\mathbf{u}}^{n_{k-1}})+2\xi_{u}^{n_{k}}-\xi_{u}^{n_{k-1}}\right)\cdot\mathbf{n}_{f}dl. \end{array} $$
(102)

We estimate the terms on the right hand side of (101) as follows

$$ \begin{array}{@{}rcl@{}} &&-g{\int}_{\mathbb{I}}\left( B\left[\tilde{\phi}^{n+1}\right]-(1+\omega_{n})\tilde{\phi}^{n_{k}}+\omega_{n}\tilde{\phi}^{n_{k-1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl \\&\le&\frac{39g^{2}}{2\nu}\|\nabla\left( B\left[\tilde{\phi}^{n+1}\right]-(1+\omega_{n})\tilde{\phi}^{n_{k}}+\omega_{n}\tilde{\phi}^{n_{k-1}}\right)\|_{0}^{2}+\frac{\nu}{78}\|\nabla\xi_{u}^{n+1}\|_{0}^{2} \\&\le&\frac{39g^{2}}{\nu}\|\nabla\left( B\left[\tilde{\phi}^{n+1}\right]-\tilde{\phi}^{n+1}\right)\|_{0}^{2} \\&&+\frac{39g^{2}}{\nu}\|\nabla\left( \tilde{\phi}^{n+1}-(1+\omega_{n})\tilde{\phi}^{n_{k}}+\omega_{n}\tilde{\phi}^{n_{k-1}}\right)\|_{0}^{2}+\frac{\nu}{78}\|\nabla\xi_{u}^{n+1}\|_{0}^{2} \\&\le& C{\Delta} t^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\phi_{tt}(t)\|_{1}^{2}dt+C{\Delta} s^{3}{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|\phi_{tt}(t)\|_{1}^{2}dt+\frac{\nu}{78}\|\nabla\xi_{u}^{n+1}\|_{0}^{2}.~~~~~~~~~~~~ \end{array} $$
(103)
$$ \begin{array}{@{}rcl@{}} &&-g{\int}_{\mathbb{I}}\left( (1+\omega_{n})\xi_{\phi}^{n_{k}}-\omega_{n}\xi_{\phi}^{n_{k-1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl \\&\le&\frac{g^{4}C_{tr}^{4}\tilde{C}_{tr}^{4}{C_{p}^{2}}}{64k_{\min}(\frac{\nu}{78})^{2}\frac{g}{75}}\|(1+\omega_{n})\xi_{\phi}^{n_{k}}-\omega_{n}\xi_{\phi}^{n_{k-1}}\|_{0}^{2} \\&&+\frac{g}{75}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( (1+\omega_{n})\xi_{\phi}^{n_{k}}-\omega_{n}\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2}+\frac{\nu}{78}\|\nabla\xi_{u}^{n+1}\|_{0}^{2}. \end{array} $$
(104)

We estimate the terms on the right hand side of (102) as follows

$$ \begin{array}{@{}rcl@{}} && g{\int}_{\mathbb{I}}\xi_{\phi}^{n_{k+1}}\left( B\left[\tilde{\mathbf{u}}^{n_{k+1}}\right]-(2\tilde{\mathbf{u}}^{n_{k}}-\tilde{\mathbf{u}}^{n_{k-1}})\right)\cdot\mathbf{n}_{f}dl \\&\le&\frac{75g}{4k_{\min}}\|\nabla\left( B\left[\tilde{\mathbf{u}}^{n_{k+1}}\right]-(2\tilde{\mathbf{u}}^{n_{k}}-\tilde{\mathbf{u}}^{n_{k-1}})\right)\|_{0}^{2}+\frac{g}{75}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2} \\&\le&\frac{675g}{16k_{\min}}\|\nabla\left( \tilde{\mathbf{u}}^{n_{k+1}}-2\tilde{\mathbf{u}}^{n_{k}}+\tilde{\mathbf{u}}^{n_{k-1}}\right)\|_{0}^{2}+\frac{g}{75}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2} \\&\le& C{\Delta} s^{3}{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|\mathbf{u}_{tt}(t)\|_{1}^{2}dt+\frac{g}{75}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2}. \end{array} $$
(105)
$$ \begin{array}{@{}rcl@{}} g{\int}_{\mathbb{I}}\xi_{\phi}^{n_{k+1}}\left( 2\xi_{u}^{n_{k}}-\xi_{u}^{n_{k-1}}\right)\cdot\mathbf{n}_{f}dl &\le&\frac{g^{4}C_{tr}^{4}\tilde{C}_{tr}^{4}{C_{p}^{2}}}{64k_{\min}^{2}(\frac{g}{75})^{2}\frac{\nu}{78r}}\|2\xi_{u}^{n_{k}}-\xi_{u}^{n_{k-1}}\|_{0}^{2} \\&&+\frac{\nu}{78r}\|\nabla\left( 2\xi_{u}^{n_{k}}-\xi_{u}^{n_{k-1}}\right)\|_{0}^{2}\\&&+\frac{g}{75}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2}. \end{array} $$
(106)

Combining (97), (98), (103), and (104), multiplying 4Δt on the both side of (95), and summing over n from n = nk to nk+ 1 − 1, we obtain

$$ \begin{array}{@{}rcl@{}} &&\|\xi_{u}^{n_{k+1}}\|_{0}^{2}+\|2\xi_{u}^{n_{k+1}}-\xi_{u}^{n_{k+1}-1}\|_{0}^{2}-\left( \|\xi_{u}^{n_{k}}\|_{0}^{2}+\|2\xi_{u}^{n_{k}}-\xi_{u}^{n_{k}-1}\|_{0}^{2}\right) \\&&+\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\xi_{u}^{i+1}-2{\xi_{u}^{i}}+\xi_{u}^{i-1}\|_{0}^{2}+3\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{k+1}}\|_{0}^{2}+\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{k+1}-1}\|_{0}^{2} \\&&-\left( 3\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{k}}\|_{0}^{2}+\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{k}-1}\|_{0}^{2}\right)+2\nu{{\Delta} t}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( \xi_{u}^{i+1}-{\xi_{u}^{i}}\right)\|_{0}^{2} \\&&+\nu{{\Delta} t}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( \xi_{u}^{i+1}+\xi_{u}^{i-1}\right)\|_{0}^{2} \\&\le& C{\Delta} t^{4}{\int}_{t^{n_{k}-1}}^{t^{n_{k+1}}}\|\mathbf{f}_{1,tt}(t)\|_{-1}^{2}dt+C{\int}_{t^{n_{k}-1}}^{t^{n_{k+1}}}\|\left( {P_{h}^{U}}-I\right)\mathbf{u}_{t}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{4}{\int}_{t^{n_{k}-1}}^{t^{n_{k+1}}}\|\mathbf{u}_{ttt}(t)\|_{0}^{2}dt+C{{\Delta} t}^{4}{\int}_{t^{n_{k}-1}}^{t^{n_{k+1}}}\|\mathbf{u}_{tt}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{4}{\int}_{t^{n_{k}-1}}^{t^{n_{k+1}}}\|\phi_{tt}(t)\|_{1}^{2}dt+C{{\Delta} s}^{4}{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|\phi_{tt}(t)\|_{1}^{2}dt \\&&+\frac{g^{4}C_{tr}^{4}\tilde{C}_{tr}^{4}{C_{p}^{2}}{{\Delta} t}}{16k_{\min}(\frac{\nu}{78})^{2}\frac{g}{75}}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|(1+\omega_{i})\xi_{\phi}^{n_{k}}-\omega_{i}\xi_{\phi}^{n_{k-1}}\|_{0}^{2} \\&&+\frac{4g{{\Delta} t}}{75}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( (1+\omega_{i})\xi_{\phi}^{n_{k}}-\omega_{i}\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2} +\frac{8\nu{{\Delta} t}}{39}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\xi_{u}^{i+1}\|_{0}^{2}. \end{array} $$
(107)

Combining (99), (100), (105), and (106) and multiplying 4Δs on the both side of (96), we obtain

$$ \begin{array}{@{}rcl@{}} &&gs_{0}\bigg(\|\xi_{\phi}^{n_{k+1}}\|_{0}^{2}+\|2\xi_{\phi}^{n_{k+1}}-\xi_{\phi}^{n_{k}}\|_{0}^{2}-\left( \|\xi_{\phi}^{n_{k}}\|_{0}^{2}+\|2\xi_{\phi}^{n_{k}}-\xi_{\phi}^{n_{k-1}}\|_{0}^{2}\right) \\&&+\|\xi_{\phi}^{n_{k+1}}-2\xi_{\phi}^{n_{k}}+\xi_{\phi}^{n_{k-1}}\|_{0}^{2}\bigg)+3g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2}+g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k}}\|_{0}^{2} \\&&-\left( 3g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k}}\|_{0}^{2}+g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k-1}}\|_{0}^{2}\right)+2g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}-\xi_{\phi}^{n_{k}}\right)\|_{0}^{2} \\&&+g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}+\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2} \\ &\le& C{\Delta} s^{4}{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|f_{2,tt}(t)\|_{-1}^{2}dt+C{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|\left( {P_{h}^{U}}-I\right)\phi_{t}(t)\|_{0}^{2}dt \\&&+C{{\Delta} s}^{4}{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|\phi_{ttt}(t)\|_{0}^{2}dt+C{{\Delta} s}^{4}{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|\phi_{tt}(t)\|_{0}^{2}dt \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&+C{{\Delta} s}^{4}{\int}_{t^{n_{k-1}}}^{t^{n_{k+1}}}\|\mathbf{u}_{tt}(t)\|_{1}^{2}dt+\frac{g^{4}C_{tr}^{4}\tilde{C}_{tr}^{4}{C_{p}^{2}}{{\Delta} s}}{16k_{\min}^{2}(\frac{g}{75})^{2}\frac{\nu}{78r}}\|2\xi_{u}^{n_{k}}-\xi_{u}^{n_{k-1}}\|_{0}^{2} \\&&+\frac{2\nu{{\Delta} s}}{39r}\|\nabla\left( 2\xi_{u}^{n_{k}}-\xi_{u}^{n_{k-1}}\right)\|_{0}^{2}+\frac{16g{{\Delta} s}}{75}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2}. \end{array} $$
(108)

Sum (107) over k = 1 to N − 1 gives

$$ \begin{array}{@{}rcl@{}} &&\|\xi_{u}^{n_{N}}\|_{0}^{2}+\|2\xi_{u}^{n_{N}}-\xi_{u}^{n_{N}-1}\|_{0}^{2}-(\|\xi_{u}^{n_{1}}\|_{0}^{2}+\|2\xi_{u}^{n_{1}}-\xi_{u}^{n_{1}-1}\|_{0}^{2}) \\&&+\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\xi_{u}^{i+1}-2{\xi_{u}^{i}}+\xi_{u}^{i-1}\|_{0}^{2}+3\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{N}}\|_{0}^{2}+\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{N}-1}\|_{0}^{2} \\&&-\left( 3\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{1}}\|_{0}^{2}+\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{1}-1}\|_{0}^{2}\right)+2\nu{{\Delta} t}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( \xi_{u}^{i+1}-{\xi_{u}^{i}}\right)\|_{0}^{2} \\&&+\nu{{\Delta} t}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( \xi_{u}^{i+1}+\xi_{u}^{i-1}\right)\|_{0}^{2} \\&\le& C{\Delta} t^{4}{\int}_{t^{n_{1}-1}}^{T}\|\mathbf{f}_{1,tt}(t)\|_{-1}^{2}dt+C{\int}_{t^{n_{1}-1}}^{T}\|\left( {P_{h}^{U}}-I\right)\mathbf{u}_{t}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{4}{\int}_{t^{n_{1}-1}}^{T}\|\mathbf{u}_{ttt}(t)\|_{0}^{2}dt+C{{\Delta} t}^{4}{\int}_{t^{n_{1}-1}}^{T}\|\mathbf{u}_{tt}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{4}{\int}_{t^{n_{1}-1}}^{T}\|\phi_{tt}(t)\|_{1}^{2}dt+C{{\Delta} s}^{4}{\int}_{{{0}}}^{T}\|\phi_{tt}(t)\|_{1}^{2}dt \\&&+\frac{g^{4}C_{tr}^{4}\tilde{C}_{tr}^{4}{C_{p}^{2}}{{\Delta} t}}{16k_{\min}(\frac{\nu}{78})^{2}\frac{g}{75}}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|(1+\omega_{i})\xi_{\phi}^{n_{k}}-\omega_{i}\xi_{\phi}^{n_{k-1}}\|_{0}^{2} \\&&+\frac{4g{{\Delta} t}}{75}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( (1+\omega_{i})\xi_{\phi}^{n_{k}}-\omega_{i}\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2} \\&&+\frac{8\nu{{\Delta} t}}{39}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\xi_{u}^{i+1}\|_{0}^{2}. \end{array} $$
(109)

Sum (108) over k = 1 to N − 1 admits

$$ \begin{array}{@{}rcl@{}} && gs_{0}\bigg(\|\xi_{\phi}^{n_{N}}\|_{0}^{2}+\|2\xi_{\phi}^{n_{N}}-\xi_{\phi}^{n_{N-1}}\|_{0}^{2}-\left( \|\xi_{\phi}^{n_{1}}\|_{0}^{2}+\|2\xi_{\phi}^{n_{1}}-\xi_{\phi}^{n_{0}}\|_{0}^{2}\right) \\&&+\sum\limits_{k=1}^{N-1}\|\xi_{\phi}^{n_{k+1}}-2\xi_{\phi}^{n_{k}}+\xi_{\phi}^{n_{k-1}}\|_{0}^{2}\bigg)+3g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{N}}\|_{0}^{2}+g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{N-1}}\|_{0}^{2} \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&\!-\left( 3g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{1}}\|_{0}^{2}+g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{0}}\|_{0}^{2}\right)+2g{{\Delta} s}\sum\limits_{k=1}^{N-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}} - \xi_{\phi}^{n_{k}}\right)\|_{0}^{2} \\&&\!+g{{\Delta} s}\sum\limits_{k=1}^{N-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}+\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2} \\ &\le&\! C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|f_{2,tt}(t)\|_{-1}^{2}dt+C{{\int}_{0}^{T}}\|\left( {P_{h}^{U}}-I\right)\phi_{t}(t)\|_{0}^{2}dt \\&&\!+C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|\phi_{ttt}(t)\|_{0}^{2}dt+C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|\phi_{tt}(t)\|_{1}^{2}dt \\&&\!+C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|\mathbf{u}_{tt}(t)\|_{1}^{2}dt+\frac{g^{4}C_{tr}^{4}\tilde{C}_{tr}^{4}{C_{p}^{2}}{{\Delta} s}}{16k_{\min}^{2}(\frac{g}{75})^{2}\frac{\nu}{78r}}\sum\limits_{k=1}^{N-1}\|2\xi_{u}^{n_{k}}-\xi_{u}^{n_{k-1}}\|_{0}^{2} \\&&\!+\frac{2\nu{{\Delta} s}}{39r}\sum\limits_{k=1}^{N-1}\|\nabla\left( 2\xi_{u}^{n_{k}}-\xi_{u}^{n_{k-1}}\right)\|_{0}^{2}+\frac{16g{{\Delta} s}}{75}\sum\limits_{k=1}^{N-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{k+1}}\|_{0}^{2}. \end{array} $$
(110)

Note that the following inequalities hold

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( (1+\omega_{i})\xi_{\phi}^{n_{k}}-\omega_{i}\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2} \\&=&\sum\limits_{i=n_{k}}^{n_{k+1}-1}\bigg\|-\frac{1}{2}\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}-\xi_{\phi}^{n_{k}}\right) \\&&+\left( \frac{1}{2}+\omega_{i}\right)\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k}}-\xi_{\phi}^{n_{k-1}}\right)+\frac{1}{2}\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}+\xi_{\phi}^{n_{k-1}}\right)\bigg\|_{0}^{2} \\&\le&\frac{3}{4}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}-\xi_{\phi}^{n_{k}}\right)\|_{0}^{2}+12\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k}}-\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2} \\&&+\frac{3}{4}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}+\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2}, \end{array} $$
(111)
$$ \begin{array}{@{}rcl@{}} \|\nabla\left( 2\xi_{u}^{n_{k}}-\xi_{u}^{n_{k-1}}\right)\|_{0}^{2} &\le& 6\|\nabla\xi_{u}^{n_{k}}\|_{0}^{2}+3\|\nabla\xi_{u}^{n_{k-1}}\|_{0}^{2} \\&\le&\frac{9}{2}\bigg(\|\nabla\left( \xi_{u}^{n_{k}}-\xi_{u}^{n_{k}-1}\right)\|_{0}^{2}+\|\nabla\left( \xi_{u}^{n_{k}}+\xi_{u}^{n_{k}-2}\right)\|_{0}^{2} \\&&+\|\nabla\left( \xi_{u}^{n_{k}-1}-\xi_{u}^{n_{k}-2}\right)\|_{0}^{2}\bigg) \\&&+\frac{9}{4}\bigg(\|\nabla\left( \xi_{u}^{n_{k-1}}-\xi_{u}^{n_{k-1}-1}\right)\|_{0}^{2}+\|\nabla\left( \xi_{u}^{n_{k-1}}+\xi_{u}^{n_{k-1}-2}\right)\|_{0}^{2} \\&&+\|\nabla\left( \xi_{u}^{n_{k-1}-1}-\xi_{u}^{n_{k-1}-2}\right)\|_{0}^{2}\bigg), \end{array} $$
(112)

and combining the estimates (109) and (110), we obtain

$$ \begin{array}{@{}rcl@{}} &&\|\xi_{u}^{n_{N}}\|_{0}^{2}+\|2\xi_{u}^{n_{N}}-\xi_{u}^{n_{N}-1}\|_{0}^{2}+\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\xi_{u}^{i+1}-2{\xi_{u}^{i}}+\xi_{u}^{i-1}\|_{0}^{2} \\&&+3\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{N}}\|_{0}^{2}+\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{N}-1}\|_{0}^{2}+\nu{{\Delta} t}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( \xi_{u}^{i+1}-{\xi_{u}^{i}}\right)\|_{0}^{2} \\&&+\frac{\nu{{\Delta} t}}{2}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( \xi_{u}^{i+1}+\xi_{u}^{i-1}\right)\|_{0}^{2} \\&&+gs_{0}\bigg(\|\xi_{\phi}^{n_{N}}\|_{0}^{2}+\|2\xi_{\phi}^{n_{N}}-\xi_{\phi}^{n_{N-1}}\|_{0}^{2}+\sum\limits_{k=1}^{N-1}\|\xi_{\phi}^{n_{k+1}}-2\xi_{\phi}^{n_{k}}+\xi_{\phi}^{n_{k-1}}\|_{0}^{2}\bigg) \\&&+3g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{N}}\|_{0}^{2}+g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{N-1}}\|_{0}^{2}+g{{\Delta} s}\sum\limits_{k=1}^{N-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}-\xi_{\phi}^{n_{k}}\right)\|_{0}^{2} \\&&+\frac{g{{\Delta} s}}{2}\sum\limits_{k=1}^{N-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}+\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2} \\&\le& C{\Delta} t^{4}{{\int}_{0}^{T}}\|\mathbf{f}_{1,tt}(t)\|_{-1}^{2}dt+C{{\int}_{0}^{T}}\|\left( {P_{h}^{U}}-I\right)\mathbf{u}_{t}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{4}{{\int}_{0}^{T}}\|\mathbf{u}_{ttt}(t)\|_{0}^{2}dt+C{{\Delta} t}^{4}{{\int}_{0}^{T}}\|\mathbf{u}_{tt}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{4}{{\int}_{0}^{T}}\|\phi_{tt}(t)\|_{1}^{2}dt+C{{\Delta} s}^{4}{\int}_{{{0}}}^{T}\|\phi_{tt}(t)\|_{1}^{2}dt \\&&+\frac{g^{4}C_{tr}^{4}\tilde{C}_{tr}^{4}{C_{p}^{2}}{{\Delta} t}}{16k_{\min}\left( \frac{\nu}{78}\right)^{2}\frac{g}{75}}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|(1+\omega_{i})\xi_{\phi}^{n_{k}}-\omega_{i}\xi_{\phi}^{n_{k-1}}\|_{0}^{2} \\&&+C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|f_{2,tt}(t)\|_{-1}^{2}dt+C{{\int}_{0}^{T}}\|\left( {P_{h}^{U}}-I\right)\phi_{t}(t)\|_{0}^{2}dt \\&&+C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|\phi_{ttt}(t)\|_{0}^{2}dt+C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|\phi_{tt}(t)\|_{0}^{2}dt+C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|\mathbf{u}_{tt}(t)\|_{1}^{2}dt \\&&+\frac{g^{4}C_{tr}^{4}\tilde{C}_{tr}^{4}{C_{p}^{2}}{{\Delta} s}}{16k_{\min}^{2}(\frac{g}{75})^{2}\frac{\nu}{78r}}\sum\limits_{k=1}^{N-1}\|2\xi_{u}^{n_{k}}-\xi_{u}^{n_{k-1}}\|_{0}^{2}+\frac{15\nu{{\Delta} t}}{39}\|\nabla\left( \xi_{u}^{n_{1}}-\xi_{u}^{n_{1}-1}\right)\|_{0}^{2} \\&&+\frac{9\nu{{\Delta} t}}{39}\|\nabla\left( \xi_{u}^{n_{1}}+\xi_{u}^{n_{1}-2}\right)\|_{0}^{2}+\frac{9\nu{{\Delta} t}}{39}\|\nabla\left( \xi_{u}^{n_{1}-1}-\xi_{u}^{n_{1}-2}\right)\|_{0}^{2}+3\|{\nabla\xi_{u}^{0}}\|_{0}^{2} \\&&+\left( \|\xi_{u}^{n_{1}}\|_{0}^{2}+\|2\xi_{u}^{n_{1}}-\xi_{u}^{n_{1}-1}\|_{0}^{2}\right)+\left( 3\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{1}}\|_{0}^{2}+\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{1}-1}\|_{0}^{2}\right) \\&&+gs_{0}\left( \|\xi_{\phi}^{n_{1}}\|_{0}^{2}+\|2\xi_{\phi}^{n_{1}}-\xi_{\phi}^{n_{0}}\|_{0}^{2}\right)\\&&+\left( 3g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{1}}\|_{0}^{2}+g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{0}}\|_{0}^{2}\right). \end{array} $$
(113)

Setting \(\mathbf {v}_{h}=\xi _{u}^{n+1}\), \(q_{h}=\xi _{p}^{n+1}\) in (62) and (63), we obtain

$$ \begin{array}{@{}rcl@{}} &&\frac{\|\xi_{u}^{n+1}\|_{0}^{2}+\|2\xi_{u}^{n+1}-{\xi_{u}^{n}}\|_{0}^{2}}{4{{\Delta} t}}-\frac{\|{\xi_{u}^{n}}\|_{0}^{2}+\|2{\xi_{u}^{n}}-\xi_{u}^{n-1}\|_{0}^{2}}{4{{\Delta} t}} \\&&+\frac{\|\xi_{u}^{n+1}-2{\xi_{u}^{n}}+\xi_{u}^{n-1}\|_{0}^{2}}{4{{\Delta} t}}+\frac{3\|\nabla\xi_{u}^{n+1}\|_{0}^{2}+\|{\nabla\xi_{u}^{n}}\|_{0}^{2}}{4} \\&&-\frac{3\|{\nabla\xi_{u}^{n}}\|_{0}^{2}+\|\nabla\xi_{u}^{n-1}\|_{0}^{2}}{4}+\frac{\|\nabla\left( \xi_{u}^{n+1}-{\xi_{u}^{n}}\right)\|_{0}^{2}}{2} \\&&+\frac{\|\nabla\left( \xi_{u}^{n+1}+\xi_{u}^{n-1}\right)\|_{0}^{2}}{4} \\&=&\left( B\left[\mathbf{f}_{1}^{n+1}\right]-\mathbf{f}_{1}^{n+1},\xi_{u}^{n+1}\right)_{{\Omega}_{f}}+\bigg(\frac{A\left[\tilde{\mathbf{u}}^{n+1}\right]}{{{\Delta} t}}-B\left[\mathbf{u}_{t}^{n+1}\right],\xi_{u}^{n+1}\bigg)_{{\Omega}_{f}} \\&&-g{\int}_{\mathbb{I}}\left( B\left[\tilde{\phi}^{n+1}\right]-(1-\omega_{n})\phi_{h}^{n_{0}}-\omega_{n}\phi_{h}^{n_{1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl. \end{array} $$
(114)

Next, we estimate the first two terms on the right hand side of (114) by using the Cauchy-Schwarz inequality, Young’s inequality, Poincar\(\acute {\mathrm {e}}\) inequality, and Lemmas 3.2, 3.3 as follows

$$ \begin{array}{@{}rcl@{}} \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\left( B\left[\mathbf{f}_{1}^{n+1}\right]-\mathbf{f}_{1}^{n+1},\xi_{u}^{n+1}\right)_{{\Omega}_{f}}&\le&\frac{6}{\nu}\|B\left[\mathbf{f}_{1}^{n+1}\right]-\mathbf{f}_{1}^{n+1}\|_{-1}^{2}+\frac{\nu}{24}\|\nabla\xi_{u}^{n+1}\|_{0}^{2} \\ &\le& C{{\Delta} t}^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\mathbf{f}_{1,tt}(t)\|_{-1}^{2}dt+\frac{\nu}{24}\|\nabla\xi_{u}^{n+1}\|_{0}^{2}. \end{array} $$
(115)
$$ \begin{array}{@{}rcl@{}} &&\bigg(\frac{A\left[\tilde{\mathbf{u}}^{n+1}\right]}{{{\Delta} t}}-B\left[\mathbf{u}_{t}^{n+1}\right],\xi_{u}^{n+1}\bigg)_{{\Omega}_{f}} \\ &\le&\frac{12{C_{p}^{2}}}{\nu}\bigg\|\frac{A\left[\tilde{\mathbf{u}}^{n+1}\right]}{{{\Delta} t}}-\mathbf{u}_{t}^{n+1}\bigg\|_{0}^{2}+\frac{12{C_{p}^{2}}}{\nu}\|\mathbf{u}_{t}^{n+1}-B\left[\mathbf{u}_{t}^{n+1}\right]\|_{0}^{2}+\frac{\nu}{24}\|\nabla\xi_{u}^{n+1}\|_{0}^{2} \\&\le& \frac{C}{{\Delta} t}{\int}_{t^{n-1}}^{t^{n+1}}\|\left( {P_{h}^{U}}-I\right)\mathbf{u}_{t}(t)\|_{0}^{2}dt+C{\Delta} t^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\mathbf{u}_{ttt}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\mathbf{u}_{tt}(t)\|_{0}^{2}dt+\frac{\nu}{24}\|\nabla\xi_{u}^{n+1}\|_{0}^{2}. \end{array} $$
(116)

The interface term on the right hand side of (114) can be estimated as follows

$$ \begin{array}{@{}rcl@{}} &&-g{\int}_{\mathbb{I}}\left( B\left[\tilde{\phi}^{n+1}\right]-(1-\omega_{n})\phi_{h}^{n_{0}}-\omega_{n}\phi_{h}^{n_{1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl \\&=&-g{\int}_{\mathbb{I}}\left( B\left[\tilde{\phi}^{n+1}\right]-(1-\omega_{n})\tilde{\phi}_{h}^{n_{0}}-\omega_{n}\tilde{\phi}_{h}^{n_{1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl \\&&-g{\int}_{\mathbb{I}}\left( (1-\omega_{n})\xi_{\phi}^{n_{0}}-\omega_{n}\xi_{\phi}^{n_{1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl. \end{array} $$
(117)
$$ \begin{array}{@{}rcl@{}} &&-g{\int}_{\mathbb{I}}\left( B\left[\tilde{\phi}^{n+1}\right]-(1-\omega_{n})\tilde{\phi}_{h}^{n_{0}}-\omega_{n}\tilde{\phi}_{h}^{n_{1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl \\&\le&\frac{12C_{tr}^{2}\tilde{C}_{tr}^{2}C_{p}\tilde{C}_{p}g^{2}}{\nu}\|\nabla\left( B\left[\tilde{\phi}^{n+1}\right]-\tilde{\phi}^{n+1}\right)\|_{0}^{2} \\&&+\frac{12C_{tr}^{2}\tilde{C}_{tr}^{2}C_{p}\tilde{C}_{p}g^{2}}{\nu}\|\nabla\left( \tilde{\phi}^{n+1}-(1-\omega_{n})\tilde{\phi}^{n_{0}}-\omega_{n}\tilde{\phi}^{n_{1}})\right)\|_{0}^{2}+\frac{\nu}{24}\|\nabla\xi_{u}^{n+1}\|_{0}^{2} \\&\le& C{\Delta} t^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\phi_{tt}(t)\|_{1}^{2}dt+C{\Delta} s^{3}{\int}_{t^{n_{0}}}^{t^{n_{1}}}\|\phi_{tt}(t)\|_{1}^{2}dt+\frac{\nu}{24}\|\nabla\xi_{u}^{n+1}\|_{0}^{2}, \end{array} $$
(118)
$$ \begin{array}{@{}rcl@{}} &&-g{\int}_{\mathbb{I}}\left( (1-\omega_{n})\xi_{\phi}^{n_{0}}+\omega_{n}\xi_{\phi}^{n_{1}}\right)\xi_{u}^{n+1}\cdot\mathbf{n}_{f}dl \\&\le&\frac{6C_{tr}^{2}\tilde{C}_{tr}^{2}C_{p}\tilde{C}_{p}g^{2}}{\nu}\|\nabla\left( (1-\omega_{n})\xi_{\phi}^{n_{0}}+\omega_{n}\xi_{\phi}^{n_{1}}\right)\|_{0}^{2}+\frac{\nu}{24}\|\nabla\xi_{u}^{n+1}\|_{0}^{2}. \end{array} $$
(119)

Inserting the estimates of (115) to (119) into (114), we can achieve

$$ \begin{array}{@{}rcl@{}} &&\frac{\|\xi_{u}^{n+1}\|_{0}^{2}+\|2\xi_{u}^{n+1}-{\xi_{u}^{n}}\|_{0}^{2}}{4{{\Delta} t}}-\frac{\|{\xi_{u}^{n}}\|_{0}^{2}+\|2{\xi_{u}^{n}}-\xi_{u}^{n-1}\|_{0}^{2}}{4{{\Delta} t}} \\&&+\frac{\|\xi_{u}^{n+1}-2{\xi_{u}^{n}}+\xi_{u}^{n-1}\|_{0}^{2}}{4{{\Delta} t}}+\frac{3\nu\|\nabla\xi_{u}^{n+1}\|_{0}^{2}+\nu\|{\nabla\xi_{u}^{n}}\|_{0}^{2}}{4} \\&&-\frac{3\nu\|{\nabla\xi_{u}^{n}}\|_{0}^{2}+\nu\|\nabla\xi_{u}^{n-1}\|_{0}^{2}}{4}+\frac{\nu\|\nabla(\xi_{u}^{n+1}-{\xi_{u}^{n}})\|_{0}^{2}}{2} \\&&+\frac{\nu\|\nabla(\xi_{u}^{n+1}+\xi_{u}^{n-1})\|_{0}^{2}}{4} \\&\le& C{{\Delta} t}^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\mathbf{f}_{1,tt}(t)\|_{-1}^{2}+ \frac{C}{{\Delta} t}{\int}_{t^{n-1}}^{t^{n+1}}\|\left( {P_{h}^{U}}-I\right)\mathbf{u}_{t}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\mathbf{u}_{ttt}(t)\|_{0}^{2}dt+C{{\Delta} t}^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\mathbf{u}_{tt}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{3}{\int}_{t^{n-1}}^{t^{n+1}}\|\phi_{tt}(t)\|_{1}^{2}dt+C{{\Delta} s}^{3}{\int}_{t^{n_{0}}}^{t^{n_{1}}}\|\phi_{tt}(t)\|_{1}^{2}dt \\&&+\frac{6C_{tr}^{2}\tilde{C}_{tr}^{2}C_{p}\tilde{C}_{p}g^{2}}{\nu}\|\nabla((1-\omega_{n})\xi_{\phi}^{n_{0}}+\omega_{n}\xi_{\phi}^{n_{1}})\|_{0}^{2} \\&&+\frac{\nu}{8}\left( \|\nabla\left( \xi_{u}^{n+1}-{\xi_{u}^{n}}\right)\|_{0}^{2}+\|\nabla\left( \xi_{u}^{n+1}+\xi_{u}^{n-1}\right)\|_{0}^{2} +\|\nabla\left( {\xi_{u}^{n}}-\xi_{u}^{n-1}\right)\|_{0}^{2}\right). \end{array} $$
(120)

Multiplying 4Δt on the both side of (120), and summing over n from n = 1 to n1 − 1, we obtain

$$ \begin{array}{@{}rcl@{}} &&\|\xi_{u}^{n_{1}}\|_{0}^{2}+\|2\xi_{u}^{n_{1}}-\xi_{u}^{n_{1}-1}\|_{0}^{2}-\left( \|{\xi_{u}^{1}}\|_{0}^{2}+\|2{\xi_{u}^{1}}-{\xi_{u}^{0}}\|_{0}^{2}\right) \\&&+\sum\limits_{i=1}^{n_{1}-1}\|\xi_{u}^{i+1}-2{\xi_{u}^{i}}+\xi_{u}^{i-1}\|_{0}^{2}+3\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{1}}\|_{0}^{2}+\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{1}-1}\|_{0}^{2} \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&-\left( 3\nu{{\Delta} t}\|{\nabla\xi_{u}^{1}}\|_{0}^{2}+\nu{{\Delta} t}\|{\nabla\xi_{u}^{0}}\|_{0}^{2}\right)+\nu{{\Delta} t}\sum\limits_{i=1}^{n_{1}-1}\|\nabla\left( \xi_{u}^{i+1}-{\xi_{u}^{i}}\right)\|_{0}^{2} \\ &&+\frac{\nu{{\Delta} t}}{2}\sum\limits_{i=1}^{n_{1}-1}\|\nabla\left( \xi_{u}^{i+1}+\xi_{u}^{i-1}\right)\|_{0}^{2} \\&\le& C{{\Delta} t}^{4}{\int}_{0}^{t^{n_{1}}}\|\mathbf{f}_{1,tt}(t)\|_{-1}^{2}+ C{\int}_{0}^{t^{n_{1}}}\|\left( {P_{h}^{U}}-I\right)\mathbf{u}_{t}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{4}{\int}_{0}^{t^{n_{1}}}\|\mathbf{u}_{ttt}(t)\|_{0}^{2}dt +C{{\Delta} t}^{4}{\int}_{0}^{t^{n_{1}}}\|\mathbf{u}_{tt}(t)\|_{0}^{2}dt \\&&+C{{\Delta} t}^{4}{\int}_{0}^{t^{n_{1}}}\|\phi_{tt}(t)\|_{1}^{2}dt+C{{\Delta} s}^{4}{\int}_{0}^{t^{n_{1}}}\|\phi_{tt}(t)\|_{1}^{2}dt\\&&+\frac{24C_{tr}^{2}\tilde{C}_{tr}^{2}C_{p}\tilde{C}_{p}g^{2}{{\Delta} t}}{\nu}\sum\limits_{i=1}^{n_{1}-1}\|\nabla\left( (1-\omega_{i})\xi_{\phi}^{n_{0}}+\omega_{i}\xi_{\phi}^{n_{1}}\right)\|_{0}^{2}\\&&+\frac{\nu{{\Delta} t}}{2}\|\nabla\left( {\xi_{u}^{1}}-{\xi_{u}^{0}}\right)\|_{0}^{2}. \end{array} $$
(121)

Combining the estimates of (113) and (121), we arrive at

$$ \begin{array}{@{}rcl@{}} &&\|\xi_{u}^{n_{N}}\|_{0}^{2}+\|2\xi_{u}^{n_{N}}-\xi_{u}^{n_{N}-1}\|_{0}^{2}+\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\xi_{u}^{i+1}-2{\xi_{u}^{i}}+\xi_{u}^{i-1}\|_{0}^{2} \\&&+3\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{N}}\|_{0}^{2}+\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{N}-1}\|_{0}^{2}+{\nu{{\Delta} t}}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( \xi_{u}^{i+1}-{\xi_{u}^{i}}\right)\|_{0}^{2} \\&&+\frac{\nu{{\Delta} t}}{2}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( \xi_{u}^{i+1}+\xi_{u}^{i-1}\right)\|_{0}^{2} \\ &&+gs_{0}\bigg(\|\xi_{\phi}^{n_{N}}\|_{0}^{2}+\|2\xi_{\phi}^{n_{N}}-\xi_{\phi}^{n_{N-1}}\|_{0}^{2}+\sum\limits_{k=1}^{N-1}\|\xi_{\phi}^{n_{k+1}}-2\xi_{\phi}^{n_{k}}+\xi_{\phi}^{n_{k-1}}\|_{0}^{2}\bigg) \\&&+3g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{N}}\|_{0}^{2}+g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{N-1}}\|_{0}^{2}+g{{\Delta} s}\sum\limits_{k=1}^{N-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}-\xi_{\phi}^{n_{k}}\right)\|_{0}^{2} \\&&+\frac{g{{\Delta} s}}{2}\sum\limits_{k=1}^{N-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}+\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2} \\ &\le& C{\Delta} t^{4}{{\int}_{0}^{T}}\|\mathbf{f}_{1,tt}(t)\|_{-1}^{2}dt+C{{\int}_{0}^{T}}\|\left( {P_{h}^{U}}-I\right)\mathbf{u}_{t}(t)\|_{0}^{2}dt \\ &&+C{{\Delta} t}^{4}{{\int}_{0}^{T}}\|\mathbf{u}_{ttt}(t)\|_{0}^{2}dt+C{{\Delta} t}^{4}{{\int}_{0}^{T}}\|\mathbf{u}_{tt}(t)\|_{0}^{2}dt \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&+C{{\Delta} t}^{4}{{\int}_{0}^{T}}\|\phi_{tt}(t)\|_{0}^{2}dt+C{{\Delta} s}^{4}{\int}_{{{0}}}^{T}\|\phi_{tt}(t)\|_{1}^{2}dt \\&&+C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|f_{2,tt}(t)\|_{-1}^{2}dt+C{{\int}_{0}^{T}}\|\left( {P_{h}^{U}}-I\right)\phi_{t}(t)\|_{0}^{2}dt \\&&+C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|\phi_{ttt}(t)\|_{0}^{2}dt+C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|\phi_{tt}(t)\|_{0}^{2}dt+C{{\Delta} s}^{4}{{\int}_{0}^{T}}\|\mathbf{u}_{tt}(t)\|_{1}^{2}dt \\&&+\frac{5g^{4}C_{tr}^{4}\tilde{C}_{tr}^{4}{C_{p}^{2}}{{\Delta} t}}{8k_{\min}(\frac{\nu}{78})^{2}\frac{g}{75}}\sum\limits_{k=0}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\xi_{\phi}^{n_{k}}\|_{0}^{2}+\frac{5g^{4}C_{tr}^{4}\tilde{C}_{tr}^{4}{C_{p}^{2}}{{\Delta} s}}{8k_{\min}^{2}(\frac{g}{75})^{2}\frac{\nu}{78r}}\sum\limits_{k=0}^{N-1}\|\xi_{u}^{n_{k}}\|_{0}^{2}. \end{array} $$
(122)

Denote \(C_{\ddagger }=\max \limits \bigg \{\frac {5g^{4}C_{tr}^{4}\tilde {C}_{tr}^{4}{C_{p}^{2}}}{8k_{\min \limits }(\frac {\nu }{78})^{2}\frac {g}{75}gs_{0}},\frac {5g^{4}C_{tr}^{4}\tilde {C}_{tr}^{4}{C_{p}^{2}}}{8k_{\min \limits }^{2}(\frac {g}{75})^{2}\frac {\nu }{78r}}\bigg \}\), use the discrete Gronwall inequality, we get the final result

$$ \begin{array}{@{}rcl@{}} &&\|\xi_{u}^{n_{N}}\|_{0}^{2}+\|2\xi_{u}^{n_{N}}-\xi_{u}^{n_{N}-1}\|_{0}^{2}+\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\xi_{u}^{i+1}-2{\xi_{u}^{i}}+\xi_{u}^{i-1}\|_{0}^{2} \\&&+3\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{N}}\|_{0}^{2}+\nu{{\Delta} t}\|\nabla\xi_{u}^{n_{N}-1}\|_{0}^{2}+\nu{{\Delta} t}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( \xi_{u}^{i+1}-{\xi_{u}^{i}}\right)\|_{0}^{2} \\&&+\frac{\nu{{\Delta} t}}{2}\sum\limits_{k=1}^{N-1}\sum\limits_{i=n_{k}}^{n_{k+1}-1}\|\nabla\left( \xi_{u}^{i+1}+\xi_{u}^{i-1}\right)\|_{0}^{2} \\&&+gs_{0}\bigg(\|\xi_{\phi}^{n_{N}}\|_{0}^{2}+\|2\xi_{\phi}^{n_{N}}-\xi_{\phi}^{n_{N-1}}\|_{0}^{2}+\sum\limits_{k=1}^{N-1}\|\xi_{\phi}^{n_{k+1}}-2\xi_{\phi}^{n_{k}}+\xi_{\phi}^{n_{k-1}}\|_{0}^{2}\bigg) \\&&+3g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{N}}\|_{0}^{2}+g{{\Delta} s}\|\mathbf{K}^{\frac{1}{2}}\nabla\xi_{\phi}^{n_{N-1}}\|_{0}^{2}+g{{\Delta} s}\sum\limits_{k=1}^{N-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}-\xi_{\phi}^{n_{k}}\right)\|_{0}^{2} \\&&+\frac{g{{\Delta} s}}{2}\sum\limits_{k=1}^{N-1}\|\mathbf{K}^{\frac{1}{2}}\nabla\left( \xi_{\phi}^{n_{k+1}}+\xi_{\phi}^{n_{k-1}}\right)\|_{0}^{2} \le C\exp(C_{\ddagger} T)\left( {{\Delta} t}^{4}+h^{2k+2}\right). \end{array} $$
(123)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qin, Y. Second-order partitioned method and adaptive time step algorithms for the nonstationary Stokes-Darcy equations. Numer Algor 94, 413–457 (2023). https://doi.org/10.1007/s11075-023-01507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01507-y

Keywords

Navigation