Skip to main content

Advertisement

Log in

Energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon equation and coupled sine-Gordon equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Du Fort-Frankel (DFF) finite difference method (FDM) was proposed for linear diffusion equations with periodic boundary conditions by Du Fort and Frankel in 1953. It is an explicit and unconditionally von Neumann stable scheme. Thus, it is very easy to be implemented and suitable for long-term simulations. However, there has been no research work on numerical solutions of sine-Gordon equations (SGE) and nonlinear coupled sine-Gordon equations (CSGEs) by using energy-preserving Du Fort-Frankel finite difference methods (EP-DFF-FDMs). In this study, two classes of weighted EP-DFF-FDMs, which are devised by combining DFF FDMs with invariant energy quadratization methods (IEQMs), are suggested for numerical simulations of SGE and CSGEs, respectively. By using the discrete energy method, it is shown that their solutions satisfy the discrete energy conservative laws, and converge to exact solutions with an order of \(\mathcal {O}(\tau ^{2}+{h^{2}_{x}}+{h^{2}_{y}}\) \(\displaystyle +(\frac {\tau }{h_{x}})^{2}+(\frac {\tau }{h_{y}})^{2})\) in H1-norm. Here, τ denotes time increment, while hx and hy represent spacing grids in x- and y-dimensions, respectively. What is more, our methods with parameter 𝜃 ≥ 1/4 are unconditionally stable in L2-norm though they are explicit schemes. Finally, numerical results confirm the exactness of theoretical findings, and the superiorities of our algorithms over some existent algorithms in terms of computational efficiency and the ability to conserve the discrete energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

We state that the datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Leibbrandt, G.: New exact solutions of the classical sine-Gordon equation in 2 + 1 and 3 + 1 dimensions. Phys. Rev. Lett. 41, 435–438 (1978)

    Google Scholar 

  2. Leibbrandt, G., Mort, R., Wang, S.S.: Solutions of the sine–Gordon equation in higher dimensions. J. Math. Phys. 21, 1613–1624 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Aero, E.L., Bulygin, A.N., Pavlov, Y.V.: Solutions of the three-dimensional sine-Gordon equation. Theor. Math. Phys. 158(3), 313–319 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Li, J.B.: Exact traveling wave solutions and dynamical behavior for the (n + 1)-dimensional multiple sine-Gordon equation. Science in China Series A: Mathematics 50(2), 153–164 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Johnson, S., Suarez, P., Biswa, A.: New exact solutions for the sine-Gordon equation in 2 + 1 dimensions. Comput. Math. Math. Phys. 52(1), 98–104 (2012)

    MathSciNet  Google Scholar 

  6. Wazwaz, A.M.: The tanh method: Exact solutions of the sine-Gordon and the sinh-Gordon equations. Appl. Math. Comput. 167, 1196–1210 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Deng, D., Zhang, C.: A family of new fourth-order solvers for a nonlinear damped wave equation. Comput. Phys. Commun. 184, 86–101 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Strauss, Vazquez: Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28, 271–278 (1978)

    MathSciNet  MATH  Google Scholar 

  9. Guo, B., Pascual, P.J., et al: Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 18, 1–14 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Li, S., Vu-Quoc, L.: Finite difference calculus structure of a class of algorithm for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Zhang, F., Vazquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45, 17–30 (1991)

    MathSciNet  MATH  Google Scholar 

  12. Cai, W., Jiang, C., Wang, Y., Song, Y.: Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions. J. Comput. Phys. 395, 166–185 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Wang, Y., Wang, B., Ji, Z., Qin, M.: High order symplectic schemes for the sine-Gordon equation. J. Phys. Soc. Japan 72(11), 2731–2736 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Jiang, C., Cai, W., Wang, Y.: A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach. J. Sci. Comput. 80, 1629–1655 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Hou, B., Liang, D.: Energy-preserving time high-order AVF compact finite difference schemes for nonlinear wave equations with variable coefficients. J. Comput. Phys. 421, 109738 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Yan, J., Deng, D., Lu, F., Zhang, Z.: A new efficient energy-preserving finite volume element scheme for the improved Boussinesq equation. Appl Math Model 87, 20–41 (2020)

    MathSciNet  MATH  Google Scholar 

  17. He, M., Sun, P.: Energy-preserving finite element methods for a class of nonlinear wave equations. Appl. Numer. Math. 157, 446–469 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Jiang, C., Sun, J., Li, H., Wang, Y.: A fourth-order AVF method for the numerical integration of sine-Gordon equation. Appl. Math. Comput. 313(15), 144–158 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Khusnutdinova, K.R., Pelinovsky, D.E.: On the exchange of energy in coupled Klein–Gordon equations. Wave Motion 38, 1–10 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Kontorova, T.A., Frenkel, Y.I.: On the theory of plastic deformation and twinning I, II. Zhurnal Eksperimental’noii Teoreticheskoi Fiziki 8(89–95), 1340–1368 (1938)

    MATH  Google Scholar 

  21. Braun, O.M., Kivshar, Y.S.: Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306, 1–108 (1998)

    MathSciNet  Google Scholar 

  22. Yomosa, S.: Soliton excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A 27, 2120–2125 (1983)

    MathSciNet  Google Scholar 

  23. Salas, A.H.: Exact solutions of coupled sine-Gordon equations. Nonlinear Anal.: RWA 11, 3930–3935 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Hosseini, K., Mayeli, P., Kumar, D.: New exact solutions of the coupled sine-Gordon equations in nonlinear optics using the modified Kudryashov method. J. Morden Optics 65, 361–364 (2018)

    MathSciNet  Google Scholar 

  25. Ekici, M., Zhou, Q., Sonmezoglua, A., Mirzazadehc, M.: Exact solitons of the coupled sine-Gordon equation in nonlinear system. Optik 136, 435–444 (2017)

    Google Scholar 

  26. Ilati, M., Dehghan, M.: The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng. Anal. Bound. Elem. 52, 99–109 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Kumar, K.H., Vijesh, V.A.: Chebyshev wavelet quasilinearization scheme for coupled nonlinear sine-Gordon equations. J. Comput. Nonlinear Dynam. 12, 011018 (2017)

    Google Scholar 

  28. Deng, D., Liang, D.: The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations. Appl. Math. Comput. 329, 188–209 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Deng, D., Liang, D.: The energy preserving finite difference methods and their analyses for system of nonlinear wave equations in two dimensions. Appl. Numer. Math. 151, 172–198 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Deng, D., Wu, Q.: The studies of the linearly modified energy-preserving finite difference methods applied to solve two-dimensional nonlinear coupled wave equations. Numer. Algor. 88, 1875–1914 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Macías-Díaz, J.E.: A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 351, 40–53 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Xie, J., Zang, Z: An effective dissipation-preserving fourth-order difference solver for fractional-in-space nonlinear wave equations. J. Sci. Comput. 89, 1753–1776 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math Models Methods Appl Sci 27, 1993–2030 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic-tensor model of liquid crystals. Comput. Methods Appl. Mech. Engrg. 318, 803–825 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Yang, X., Zhao, J., He, X.: Linear second order and unconditionally energy stable schemes for the viscous Cahn–Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Yang, X., Zhang, G.: Convergence analysis for the invariant energy quadratization (IEQ) schemes for solving the Cahn-Hilliard and Allen-Cahn equations with general nonlinear potential. J. Sci. Comput. 82, 55 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Liu, Z., Li, X.: Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numer. Algor. 85, 107–132 (2020)

    MathSciNet  MATH  Google Scholar 

  39. DuFort, E.C., Frankel, S.P.: Conditions in the numerical treatment of parabolic differential equations. Math. Tables Other Aids Comput. 7(43), 135–152 (1953)

    MathSciNet  Google Scholar 

  40. Corem, N., Ditkowski, A.: New analysis of the Du Fort–Frankel methods. J. Sci. Comput. 53, 35–54 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Dai, W.: An unconditionally stable three-level explicit difference scheme for Schrödinger equation with a variable coefficient. SIAM J. Numer. Anal. 29(1), 174–181 (1992)

    MathSciNet  MATH  Google Scholar 

  42. Wu, L.: Du Fort-Frankel-type methods for linear and nonlinear Schrödinger equations. SIAM J. Numer. Anal. 33, 1526–1533 (1996)

    MathSciNet  MATH  Google Scholar 

  43. Ivanauskas, F., Radziunas, M.: On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations. SIAM J. Numer. Anal. 36(5), 1466–1481 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Markowich, P.A., Pietra, P., Pohl, C., Stimming, H.P.: A wigner-measure analysis of the Dufort-Frankel scheme for the Schrödinger equation. SIAM J. Numer. Anal. 40(4), 1281–1310 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Liao, H., Zhang, Y., Zhao, Y., Shi, H.: Stability and convergence of modified Du Fort–Frankel schemes for solving time-fractional subdiffusion equations. J. Sci. Comput. 61, 629–648 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Al-Shibani, F., Ismail, A.: Compact Crank–Nicolson and Du Fort–Frankel method for the solution of the time fractional diffusion equation. Int. J. Comput. Meth. 12(6), 1550041 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Radwan, S.F.: Comparison of higher-order accurate schemes for solving the two-dimensional unsteady Burgers’ equation. J. Comput. Appl. Math. 174, 383–397 (2005)

    MathSciNet  MATH  Google Scholar 

  48. Masoudi, H.M., Arnold, J.M.: Parallel efficient three-dimensional beam propagation method using the Du Fort-Frankel technique. Microw. Opt. Technol. Lett. 24(3), 179–182 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their valuable comments and suggestions, which have helped to improve the paper. We are also very grateful to Editor in Chief Claude Brezinski for his kind help.

Funding

This work is partly supported by the National Natural Science Foundation of China (Nos. 11861047), Natural Science Foundation of Jiangxi Province for Distinguished Young Scientists (No. 20212ACB211006), and Natural Science Foundation of Jiangxi province (No. 20202BABL201005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingwen Deng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, D., Chen, J. & Wang, Q. Energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon equation and coupled sine-Gordon equations. Numer Algor 93, 1045–1081 (2023). https://doi.org/10.1007/s11075-022-01453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01453-1

Keywords

Navigation