Skip to main content
Log in

Efficient second-order, linear, decoupled and unconditionally energy stable schemes of the Cahn-Hilliard-Darcy equations for the Hele-Shaw flow

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we consider the numerical approximations for a hydrodynamical model of Cahn-Hilliard-Darcy equations. We develop two linear, decoupled, energy stable, and second-order time-marching schemes based on the “Invariant Energy Quadratization” method for nonlinear terms in the Cahn-Hilliard equation, and the projection method for the Darcy equations. Moreover, we prove the well-posedness of the linear system and their unconditional energy stabilities rigorously. We also construct a linear, decoupled, energy stable, and second-order time marching scheme by using the “Scalar Auxiliary Variable” method. Various numerical tests are presented to illustrate the stability and the accuracy of the numerical schemes and simulate the process of coarsening in binary fluid and investigate the effect of the rotating and the gravity on the Hele-Shaw cell in 2D and 3D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alvarez-Lacalle, E., Ortín, J., Casademunt, J.: Low viscosity contrast fingering in a rotating Hele-Shaw cell. Phy. Fluids 16(4), 908–924 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    MATH  Google Scholar 

  3. Carrillo, Ll., Magdaleno, F.X., Casademunt, J., Ortín, J.: Experiments in a rotating hele-shaw cell. Phy. Rev. E 54(6), 6260–6267 (1958)

    Google Scholar 

  4. Chen, C., Yang, X.: Fully-decoupled, energy stable second-order time-accurate and finite element numerical scheme of the binary immiscible Nematic-Newtonian model. Comput. Methods Appl. Mech. Eng. 395, 114963 (2022)

    MathSciNet  MATH  Google Scholar 

  5. Chen, C., Yang, X.: A Second-order time accurate and fully-decoupled numerical scheme of the Darcy-Newtonian-Nematic model for two-phase complex fluids confined in the Hele-Shaw cell. J. Comput. Phys. 456, 111026 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Chen, C.Y., Huang, Y.S.: Diffuse-interface approach to rotating hele-shaw flows. Phys. Rev. E 84(4), 046302 (2011)

    Google Scholar 

  7. Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Chen, R., Yang, X., Zhang, H.: Second order, linear, and unconditionaly energy stable schemes for a hydrodynamic model of smectic-a liquid crystals. SIAM J. Sci. Comput. 39(6), A2808–A2833 (2017)

    MATH  Google Scholar 

  9. Chen, R., Yang, X., Zhang, H.: Decoupled, energy stable scheme for hydrodynamic allen-cahn phase field moving contact line model. J. Comput. Math. 36(5), 661–681 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Chen, W., Feng, W., Liu, Y., Wang, C., Wise, S.M.: A second order energy stable scheme for the cahn-hilliard-hele-shaw equations. Discrete Contin. Dyn. Syst. - B 24(1), 149–182 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Cueto-Felgueroso, L., Juanes, R.: A phase-field model of two-phase hele-shaw flow. J. Fluid Mech. 758, 522–552 (2014)

    MathSciNet  Google Scholar 

  12. Dong, S., Shen, J.: A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase imcompressible flows with large density ratios. J. Comput. Phys. 231, 5788–5804 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Weinan, E., Liu, J.-G.: Projection method. I. Convergence and numerical boundary layers. SIAM J. Numer. Anal. 32(4), 1017–1057 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Feng, X.: Fully discrete finite element approximations of the navier-stokes-cahn-hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Feng, X., Wise, S.: Analysis of a darcy-cahn-hilliard diffuse interface model for the hele-shaw flow and its fully discrete finite element approximation. SIAM J. Numer. Anal. 50, 1320–1343 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51, 3036–3061 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Guo, R., Xia, Y., Xu, Y.: An efficient fully-discrete local discontinuous galerkin method for the cahn- hilliard-hele-shaw system. J. Comput. Phys. 264, 2834–2846 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Guo, Z., Lin, P., Lowengrub, J.S.: A numerical method for the quasi-incompressible cahn-hilliard-navier-stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Han, D., Wang, X.: A second order in time, decoupled, unconditionally stable numerical scheme for the Cahn-Hilliard-Darcy system. J. Sci. Comput. 77, 1210–1233 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Ingram, R.: A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier-Stokes equations. Math. Comp. 82(284), 1953–1973 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Lee, H., Lowengrub, J.S., Goodman, J.: Modeling pinchoff and reconection in a hele-shaw cell. i. the models and their calibration. Phys. Fluids 14(2), 492–513 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Lee, H., Lowengrub, J.S., Goodman, J.: Modeling pinchoff and reconection in a hele-shaw cell. ii. analysis and simulation in the nonlinear regime. Phys. Fluids 14(2), 514–545 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Liu, C., Shen, J., Yang, X.: Dynamics of defect motion in nematic liquid crystal flow: modeling and numerical simulation. Commun. Comput. Phys. 2, 1184–1198 (2007)

    MATH  Google Scholar 

  24. Liu, C., Shen, J., Yang, X.: Decouppled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62, 601–622 (2014)

    MATH  Google Scholar 

  25. Shen, J.: On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes. Math. Comp. 65(215), 1039–1065 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order converx splitting schemes for gradient flows with ehrlich-schewoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Shen, J., Yang, X.: Decoupled energy stable schemes for phase-field models of two-phase complex fluids. SIAM J. Sci. Comput. 36, 122–145 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Shen, J., Yang, X.: Decoupled energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53, 279–296 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Shen, J., Yang, X., Yu, H.: Efficient energy stable numerical schemes for a phase-field moving contact line model. J. Comput. Phys. 284, 617–630 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Tabeling, P., Zocchi, G., Libchaber, A.: An experiment study of the saffman-taylor instability. J. Fluid Mech. 177, 67–82 (1987)

    Google Scholar 

  32. van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Statist. Comput. 7(3), 870–891 (1986)

    MathSciNet  MATH  Google Scholar 

  33. Wise, S.M.: Unconditionally stable finite difference, nonliear multigrid simulation of the cahn-hilliard-hele-shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Yang, X.: Linear, first and second-order, unconditionaly energy stable numerical schems for the phase-field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Yang, X.: On a novel fully-decoupled, linear and second-order accurate numerical scheme for the Cahn-Hilliard-Darcy system of two- phase Hele-Shaw flow. Comput. Phys. Commun. 263, 107868 (2021)

    MathSciNet  Google Scholar 

  36. Yang, X.: A novel second-order time marching scheme for the Navier-Stokes/Darcy coupled with mass-conserved Allen-Cahn phase-field models of two-phase incompressible flow. Comput. Methods Appl. Mech. Engrg. 377, 113597 (2021)

    MATH  Google Scholar 

  37. Yang, X.: A novel fully-decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier-Stokes equations coupled with mass-conserved Allen-Cahn phase-field model of two-phase incompressible flow. Int. J. Numer. Methods Eng. 122, 1283–1306 (2021)

    MathSciNet  Google Scholar 

  38. Zhang, G.-D., He, X., Yang, X.: Decoupled, linear, and unconditionally energy stable fully-discrete finite element numerical scheme for a two-phase ferrohydrodynamics model. SIAM J. Sci. Comput. 43, B167–B193 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Yang, X.: On a novel fully-decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model. SIAM J. Sci. Comput. 43, B479–B507 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Gao, Y., He, X., Mei, L., Yang, X.: Decoupled, linear, and energy stable finite element method for Cahn-Hilliard-Navier-Stokes-Darcy phase-field model. SIAM J. Sci. Comput. 40, B110–B137 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Yang, X., Ju, L.: Efficient linear schemes with unconditionally energy stability for the phase-field elastic bending energy model. Comput. Methods Appl. Mech Engrg. 315, 691–712 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Yang, X., Ju, L.: Linear unconditionally energy stable schemes for the binary fluid surfactant phase-field model. Comput. Methods Appl. Mech. Engrg. 318, 1005–1029 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components cahn-hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27, 1993–2030 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of R. Chen was partially supported by the National Natural Science Foundation of China (NSFC) with grant numbers 12001055 and 11971072. The work of K. Pan was partially supported by Science Challenge Project (No. TZ2016002), the National Natural Science Foundation of China (No. 41874086), the Excellent Youth Foundation of Hunan Province of China (No. 2018JJ1042). The work of X. Yang was partially supported by National Science Foundation with grant numbers DMS-1818783 and DMS-2012490.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaxiang Li or Xiaofeng Yang.

Ethics declarations

The authors declare no competing interests.

Additional information

Data availability

We state that the datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Li, Y., Pan, K. et al. Efficient second-order, linear, decoupled and unconditionally energy stable schemes of the Cahn-Hilliard-Darcy equations for the Hele-Shaw flow. Numer Algor 92, 2275–2306 (2023). https://doi.org/10.1007/s11075-022-01388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01388-7

Keywords

Mathematics Subject Classification (2010)

Navigation