Skip to main content
Log in

A modulus-based formulation for the vertical linear complementarity problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We introduce a modulus-based formulation for vertical linear complementarity problems (VLCPs) with an arbitrary number of matrices. This formulation can be used to set up a variety of modulus-based solution methods, including, for example, the modulus-based matrix splitting methods for VLCPs that we here introduce. In this context, we particularly analyze the methods for problems with = 2 (providing also sufficient conditions for their global convergence) and we then generalize the formulation of the methods to any . Finally, some numerical experiments are solved to evaluate the performance of the proposed methods, which we compare with an existing smoothing Newton method for VLCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. J. Combin. Theory 8, 79–90 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem, Classics in Applied Mathematics. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  3. Gowda, M.S., Sznajder, R.: The generalized order linear complementarity problem. SIAM J. Matrix Anal. Appl. 15, 779–795 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sun, M.: Monotonicity of Mangasarian’s iterative algorithm for generalized linear complementarity problems. J. Math. Anal. Appl. 144, 249–260 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fujisawa, T., Kuh, E.S.: Piecewise-linear theory of nonlinear networks. SIAM J. Appl. Math. 22, 307–328 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fujisawa, T., Kuh, E.S., Ohtsuki, T.: A sparse matrix method for analysis of piecewise-linear resistive networks. IEEE Trans. Circ. Theory 19, 571–584 (1972)

    Article  MathSciNet  Google Scholar 

  7. Nagae, T., Akamatsu, T.: A generalized complementarity approach to solving real option problems. J. Econom. Dynam. Control 32, 1754–1779 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Oh, K.P.: The formulation of the mixed lubrication problem as a generalized nonlinear complementarity problem. J. Tribol. 108, 598–604 (1986)

    Article  Google Scholar 

  9. Qi, H.-D., Liao, L.-Z.: A smoothing Newton method for extended vertical linear complementarity problems. SIAM J. Matrix Anal. Appl. 21(1), 45–66 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ping, Z.-L., You, G.-Z.: Global linear and quadratic one-step smoothing Newton method for vertical linear complementarity problems. Appl. Math. Mech. (English Ed.) 24(6), 738–746 (2003)

    Article  MathSciNet  Google Scholar 

  11. Peng, J.-M., Lin, Z.: A non-interior continuation method for generalized linear complementarity problems. Math. Program. Ser. A 86, 533–563 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mohan, S.R., Neogy, S.K., Sridhar, R.: The generalized linear complementarity problem revisited. Math. Program., 197–218 (1996)

  13. Ebiefung, A.A.: Nonlinear mappings associated with the generalized linear complementarity problem. Math. Program. 69, 255–268 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Mezzadri, F., Galligani, E.: Projected splitting methods for vertical linear complementarity problems, J. Optim. Theory Appl. (in press), https://doi.org/10.1007/s10957-021-01922-y (2021)

  15. Pang, J.S.: On the convergence of a basic iterative method for the implicit complementarity problem. J. Optim. Theory Appl. 37(2), 149–162 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mohan, S.R., Neogy, S.K.: Algorithms for the generalized linear complementarity problem with a vertical block z-matrix. SIAM J. Optim. 6(4), 994–1006 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mohan, S.R., Neogy, S.K.: Vertical block hidden Z-matrices and the generalized linear complementarity problem. SIAM J. Matrix Anal. Appl. 18(1), 181–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ebiefung, A.A.: The vertical linear complementarity problem associated with P0-matrices. Optim. Methods Softw. 10, 747–761 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zheng, N., Yin, J.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Algoritm. 64, 245–262 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zheng, H., Li, W., Vong, S.: A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems. Numer. Algoritm. 74(1), 137–152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, L.: Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algoritm. 57(1), 83–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bai, Z.-Z., Zhang, L.-L.: Modulus-based multigrid methods for linear complementarity problems. Numer Linear Algebra Appl. 24, e2105:1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Zheng, H., Li, W.: The modulus-based nonsmooth Newton’s method for solving linear complementarity problems. J. Comput. Appl. Math 288, 116–126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zheng, H., Li, W., Qu, W.: A non-modulus linear method for solving the linear complementarity problem. Linear Algebra Appl. 495, 38–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xia, Z., Li, C.-L.: Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem. Appl. Math. Comput. 271, 34–42 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Huang, N., Ma, C.-F.: The modulus-based matrix splitting algorithms for a class of weakly nonlinear complementarity problems. Numer. Linear Algebra Appl. 23(3), 558–569 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng, H.: Improved convergence theorems of modulus-based matrix splitting iteration method for nonlinear complementarity problems of H-matrices. Calcolo 54(4), 1481–1490 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, R., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems. Numer. Algoritm. 75, 339–358 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mezzadri, F., Galligani, E.: Modulus-based matrix splitting methods for horizontal linear complementarity problems. Numer. Algoritm. 83(1), 201–219 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zheng, H., Vong, S.: On convergence of the modulus-based matrix splitting iteration method for horizontal linear complementarity problems of H+-matrices. Appl. Math. Comput. 369, 1–6 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Mezzadri, F.: Modulus-based synchronous multisplitting methods for solving horizontal linear complementarity problems on parallel computers. Numer. Linear Algebra Appl. 27(e2319), 1–15 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Zheng, H., Vong, S.: A two-step modulus-based matrix splitting iteration method for horizontal linear complementarity problems. Numer. Algorithm. 86, 1791–1810 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zheng, H., Vong, S.: A modified modulus-based matrix splitting iteration method for solving implicit complementarity problems. Numer. Algorithm. 82 (2), 573–592 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, S.-L., Guo, P.: Modulus-based matrix splitting algorithms for the quasi-complementarity problems. Appl. Numer. Math 132, 127–137 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  39. Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Frommer, A., Szyld, D.B.: H-splittings and two-stage iterative methods. Numer. Math. 63, 345–356 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sznajder, R., Gowda, M.S.: Generalizations of P0- and P-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 223-224, 695–715 (1995)

    Article  MATH  Google Scholar 

  42. Mezzadri, F., Galligani, E.: A generalization of irreducibility and diagonal dominance with applications to horizontal and vertical linear complementarity problems. Linear Algebra Appl. 621, 214–234 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mezzadri, F., Galligani, E.: On the convergence of modulus-based matrix splitting methods for horizontal linear complementarity problems in hydrodynamic lubrication. Math. Comput. Simul. 176, 226–242 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zheng, H., Vong, S.: On the modulus-based successive overrelaxation iteration method for horizontal linear complementarity problems arising from hydrodynamic lubrication. Appl. Math. Comput. 402, 126165 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Miyamoto, S., Yamashita, M.: An improved convergence based on accelerated modulus-based Gauss–Seidel method for interactive rigid body simulations. SN Appl. Sci. 3, 266 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their helpful comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Mezzadri.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezzadri, F. A modulus-based formulation for the vertical linear complementarity problem. Numer Algor 90, 1547–1568 (2022). https://doi.org/10.1007/s11075-021-01240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01240-4

Keywords

Navigation