Skip to main content
Log in

Numerical methods for the two-dimensional Fokker-Planck equation governing the probability density function of the tempered fractional Brownian motion

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we study the numerical schemes for the two-dimensional Fokker-Planck equation governing the probability density function of the tempered fractional Brownian motion. The main challenges of the numerical schemes come from the singularity in the time direction. When 0 < H < 0.5, a change of variables \(\partial \left (t^{2H}\right )=2Ht^{2H-1}\partial t\) avoids the singularity of numerical computation at t = 0, which naturally results in nonuniform time discretization and greatly improves the computational efficiency. For H > 0.5, the time span dependent numerical scheme and nonuniform time discretization are introduced to ensure the effectiveness of the calculation and the computational efficiency. The stability and convergence of the numerical schemes are demonstrated by using Fourier method. By numerically solving the corresponding Fokker-Planck equation, we obtain the mean squared displacement of stochastic processes, which conforms to the characteristics of the tempered fractional Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Bruno, R., Sorriso-Valvo, L., Carbone, V., Bavassano, B.: A possible truncated-Lévy-flight statistics recovered from interplanetary solar-wind velocity and magnetic-field fluctuations. Europhys. Lett. 66(1), 146–152 (2004)

    Google Scholar 

  3. Chen, Y., Wang, X.D., Deng, W.H.: Localization and ballistic diffusion for the tempered fractional Brownian-Langevin motion. J. Stat. Phys. 169(1), 18–37 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Deng, W.H., Zhang, Z.J.: High Accuracy Algorithm for the Differential Equations Governing Anomalous Diffusion. World Scientific, Singapore (2019)

    MATH  Google Scholar 

  5. Deng, W.H., Li, B.Y., Tian, W.Y., Zhang, P.W.: Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian. Multiscale Model Simul. 16(1), 125–149 (2018)

    MathSciNet  Google Scholar 

  6. Deng, W.H., Wu, X.C., Wang, W.L.: Mean exit time and escape probability for the anomalous processes with the tempered power-law waiting times. EPL. 117 (1), 10009 (2017)

    Google Scholar 

  7. Drysdale, P.M., Robinson, P.A.: Lévy random walks in finite systems. Phys. Rev. E. 58(5), 5382–5394 (1998)

    Google Scholar 

  8. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. 37(31), R161–R208 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Schumer, R., Meerschaert, M.M., Baeumer, B.: Fractional advection-dispersion equations for modeling transport at the Earth surface. J. Geophys. Res. 114(6), F00A07 (2009)

    Google Scholar 

  10. Chen, Y., Wang, X.D., Deng, W.H.: Tempered fractional Langevin-Brownian motion with inverse β-stable subordinator. J. Phys. A: Math. Theor. 51(49), 495001 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Meerschaert, M.M., Sabzikar, F.: Tempered fractional Brownian motion. Stat. Probab. Lett. 83(10), 2269–2275 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Meerschaert, M.M., Sabzikar, F.: Stochastic integration for tempered fractional Brownian motion. Stoch. Process. Appl. 124(7), 2363–2387 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Yuste, S.B., Quintana-Murillo, J.: A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Comm. 183 (12), 2594–2600 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Filbet, F., Pareschi, L.: A numerical method for the accurate solution of the Fokker-Planck-Landau equation in the nonhomogeneous case. J. Comput. Phys. 179 (1), 1–26 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, Y.N., Sun, Z.Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230(24), 8713–8728 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Jin, S., Yan, B.: A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation. J. Comput. Phys. 230(17), 6420–6437 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22(3), 87–99 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Chen, C.M., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algor. 54(1), 1–21 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Smith, J.: Engineering applications of ADI methods to piecewise linear multidimensional heat transfer. J. Comput. Phys. 17(2), 181–191 (1975)

    MATH  Google Scholar 

  20. Epperlein, E.M.: Implicit and conservative difference scheme for the Fokker-Planck equation. J. Comput. Phys. 112(2), 291–297 (1994)

    MATH  Google Scholar 

  21. Reichmann, O.: Optimal space-time adaptive wavelet methods for degenerate parabolic PDEs. Numer. Math. 121(2), 337–365 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46(2), 1079–1095 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Napolitano, M.: Efficient ADI and spline ADI methods for the steady-state Navier-Stokes equations. Int. J. Numer. Meth. Fluids. 4(12), 1101–1115 (1984)

    MATH  Google Scholar 

  24. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Lemou, M., Mieussens, L.: Implicit schemes for the Fokker–Planck–Landau equation. SIAM J. Numer. Anal. 27(3), 809–830 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, Y.N., Sun, Z.Z.: Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation. J. Sci. Comput. 59(1), 104–128 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Shen, S., Liu, F.: Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends. ANZIAM J. 46(E), 871–887 (2005)

    MathSciNet  Google Scholar 

  28. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56(4), 1138–1145 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205(2), 719–736 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China under Grant No. 11671182, and the Fundamental Research Funds for the Central Universities under Grants No. lzujbky-2018-ot03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Numerical stability

For 0 < H < 0.5, the Fourier series of uk(x,y) is

$$ u^{k}(x,y)=\sum\limits_{p_{1}=-\infty}^{+\infty}\sum\limits_{p_{2}=-\infty}^{+\infty} \hat{u}_{p_{1},p_{2}}^{k}\exp\left( i\frac{2p_{1}\pi x}{L}+i\frac{2p_{2}\pi y}{L^{\prime}}\right), $$
(A.1)

where

$$ \hat{u}_{p_{1},p_{2}}^{k}=\frac{1}{LL^{\prime}}{{\int}_{0}^{L}}{\int}_{0}^{L^{\prime} } u^{k}(x,y)\exp\left( -i\frac{2p_{1}\pi x}{L}-i\frac{2p_{2}\pi y}{L^{\prime}}\right)\mathrm{d} x \mathrm{d} y\quad p_{1},p_{2}=0,\pm1,{}\cdots. $$

There exists Parseval equation

$$ \left\|u^k(x,y)\right\|_{L^2}^2=LL^{\prime}\sum\limits_{p_1=-\infty}^{+\infty} \sum\limits_{p_2=-\infty}^{+\infty}\left|\hat{u}_{p_1,p_2}^k\right|^2. $$

From (2.4), we get

$$ \begin{array}{l} u^{k+1}\left( x+x_{m},y+y_{n}\right)-u^{k}\left( x+x_{m},y+y_{n}\right)\\ =\frac{r}{h^{2}}{\delta_{x}^{2}}u^{k+1}\left( x+x_{m},y+y_{n}\right)^{k+1}+ \frac{r}{l^{2}}{\delta_{y}^{2}}u^{k+1}\left( x+x_{m},y+y_{n}\right). \end{array} $$
(A.2)

Substituting (A.1) into (A.2) leads to

$$ \begin{array}{l} \sum\limits_{p_{1}=-\infty}^{+\infty}\sum\limits_{p_{2}=-\infty}^{+\infty} \hat{u}_{p_{1},p_{2}}^{k}Q\left( p_{1},p_{2}\right)\\ =\sum\limits_{p_{1}=-\infty}^{+\infty}\sum\limits_{p_{2}=-\infty}^{+\infty} \hat{u}_{p_{1},p_{2}}^{k+1}Q\left( p_{1},p_{2}\right) \left\{\left( 1+\frac{2r}{h^{2}}+\frac{2r}{l^{2}}\right)\right.\\ ~~~~\left.-\frac{r}{h^{2}} \left[\exp\left( i\frac{2p_{1}\pi h}{L}\right)+\exp\left( -i\frac{2p_{1}\pi h}{L}\right)\right] - \frac{r}{l^{2}}\left[\exp\left( i\frac{2p_{2}\pi l}{L^{\prime}}\right)+\exp\left( -i\frac{2p_{2}\pi l}{L^{\prime}}\right)\right]\right\}, \end{array} $$
(A.3)

where

$$ Q\left( p_1,p_2\right)=\exp\left( i\frac{2p_1\pi x}{L}+i\frac{2p_2\pi y}{L^{\prime}}\right)\exp\left( i\frac{2p_1\pi m h}{L}+i\frac{2p_2\pi n l}{L^{\prime}}\right). $$

Since the two sides of (A.3) are the Fourier series, we have

$$ \hat{u}_{p_{1},p_{2}}^{k+1}=G_{1}\left( p_{1}h,p_{2}l\right)\hat{u}_{p_{1},p_{2}}^{k}, $$
(A.4)

where

$$ G_1\left( p_1h,p_2l\right)=\frac{1}{1+\frac{2r}{h^2}\left( 1-\cos\frac{2p_1\pi h}{L}\right)+\frac{2r}{l^2}\left( 1-\cos\frac{2p_2\pi l}{L^{\prime}}\right)}. $$

This implies that

$$ 0\le G_1\left( p_1h,p_2l\right)\le1. $$

Combining Parseval equation and (A.4) results in

$$ \begin{array}{@{}rcl@{}} \left\|u^{k}(x,y)\right\|_{L^{2}}^{2} &=&LL^{\prime}\sum\limits_{p_{1}=-\infty}^{+\infty}\sum\limits_{p_{2}=-\infty}^{+\infty} \left|\hat{u}_{p_{1},p_{2}}^{k}\right|^{2}\\ &<&\left\|u^{0}(x,y)\right\|_{L^{2}}^{2}. \end{array} $$

As H > 0.5, for \(t\ge t_{\max \nolimits }=t_{k_{1}}\), using the same process, we have

$$ \hat{u}_{p_{1},p_{2}}^{k+1}=G_{2}\left( p_{1}h,p_{2}l\right)\hat{u}_{p_{1},p_{2}}^{k}, $$
(A.5)

where

$$ G_2\left( p_1h,p_2l\right)=\frac{1}{1+\frac{2r_1}{h^2}\left( 1-\cos\frac{2p_1\pi h}{L}\right)+\frac{2r_1}{l^2}\left( 1-\cos\frac{2p_2\pi h}{L^{\prime}}\right)} $$

and

$$ r_1=\frac{{\varGamma}(H+1/2)}{H\sqrt{\pi}(2\lambda)^H} \left[\lambda t_{k+1}K_{H-1}(\lambda t_{k+1})\tau\right]. $$

For kk1, with the proof being completely the same as the case that 0 < H < 0.5, there exists

$$ \left\|u^{k}(x,y)\right\|_{L^{2}}^{2}<\left\|u^{0}(x,y)\right\|_{L^{2}}^{2}. $$
(A.6)

For k > k1, combining (A.5) and (A.6) leads to

$$ \begin{array}{@{}rcl@{}} \left\|u^{k}(x,y)\right\|_{L^{2}}^{2} &=&LL^{\prime}\sum\limits_{p_{1}=-\infty}^{+\infty}\sum\limits_{p_{2}=-\infty}^{+\infty} \left[G_{2}\left( p_{1}h,p_{2}l\right)\right]^{2k-2k_{1}}\left|\hat{u}_{p_{1},p_{2}}^{k_{1}}\right|^{2}\\ &<&\left\|u^{0}(x,y)\right\|_{L^{2}}^{2}. \end{array} $$

Appendix B: Convergence

We use notations

$$ \begin{array}{l} Lu(x,y,t)=\frac{\partial u(x,y,t)}{\partial \left( t^{2H}\right)}-\frac{{\varGamma}(H+1/2)\lambda t^{1-H}K_{H-1}(\lambda t)}{2H\sqrt{\pi}(2\lambda)^{H}} \left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right]u(x,y,t),\\ L^{(1)}u_{m,n}^{k}=\frac{u_{m,n}^{k+1}-u_{m,n}^{k}}{{\varDelta} \left( t_{k}^{2H}\right)}-\frac{{\varGamma}(H+1/2)\lambda t_{k+1}^{1-H}K_{H-1}(\lambda t_{k+1})}{2H\sqrt{\pi}(2\lambda)^{H}}\left[\frac{{\delta_{x}^{2}}}{h^{2}}+\frac{{\delta_{y}^{2}}}{l^{2}}\right]u_{m,n}^{k+1}. \end{array} $$

As 0 < H < 0.5, performing the Taylor expansion at \(t_{k}^{2H}\), there exist

$$ \begin{array}{l} \frac{{\varDelta} t_{k}}{{\varDelta}\left( t_{k}^{2H}\right)} =\frac{t_{k+1}-t_{k}}{\tau}\\ =\frac{t_{k}^{1-2H}}{2H}-\frac{(1-2H)t_{k}^{1-4H}}{8H^{2}}\tau+O\left( \tau^{2}\right) \end{array} $$
(B.1)

and

$$ \frac{\left( {\varDelta} t_{k}\right)^{2}}{{\varDelta} \left( t_{k}^{2H}\right)}=\frac{t_{k}^{2-4H}}{4H^{2}}\tau+O\left( \tau^{2}\right). $$
(B.2)

Letting \( R_{m,n}^{k}=L^{(1)}u_{m,n}^{k}-[Lu(x,y,t)]_{m,n}^{k}, \) and using (B.1) and (B.2) lead to

$$ \begin{array}{l} R_{m,n}^{k}=-\frac{(1-2H)t_{k}^{1-4H}}{8H^{2}}\tau\left( \frac{\partial u(x,y,t)}{\partial t}\right)_{m,n}^{k}-\frac{t_{k}^{2-4H}}{8H^{2}}\tau\left( \frac{\partial^{2} u(x,y,t)}{\partial t^{2}}\right)_{m,n}^{k}+O\left( \tau^{2}+h^{2}+l^{2}\right)\\ =O\left( \tau+h^{2}+l^{2}\right) \end{array}. $$
(B.3)

For \(e_{m,n}^{k}=u_{m,n}^{k}-u(x_{m},y_{n},t_{k})\), from (1.3), (2.4), and (B.3), we have

$$ \begin{array}{l} e^{k+1}\left( x+x_{m},y+y_{n}\right)-e^{k}\left( x+x_{m},y+y_{n}\right)\\ =r\left[\frac{{\delta_{x}^{2}} }{h^{2}}+\frac{{\delta_{y}^{2}} }{l^{2}}\right]e^{k+1}\left( x+x_{m},y+y_{n}\right)+\tau R^{k}\left( x+x_{m},y+y_{n}\right). \end{array} $$

Following the proof process of numerical stability and using the expansion similar to (A.3), there exists

$$ \left\|e^{k+1}\right\|_{L^2}^2<\left\|e^k+\tau R^k\right\|_{L^2}^2, $$

leading to

$$ \begin{array}{@{}rcl@{}} \left\|e^{k}\right\|_{L^{2}}&<&\left\|e^{k-1}\right\|_{L^{2}}+\tau \left\|R^{k-1}\right\|_{L^{2}}\\ &\le&\left\|e^{0}\right\|_{L^{2}}+k\tau \max\limits_{0\le i\le k}\left\|R^{i}\right\|_{L^{2}}\\ &\le&t_{k}^{2H}\max\limits_{0\le i\le k}\left\|R^{i}\right\|_{L^{2}}\\&=&O\left( \tau+h^{2}+l^{2}\right). \end{array} $$

For H > 0.5, when \(t>t_{\max \nolimits }\), by Taylor expansion at \({t_{k}^{H}}\), we have

$$ \frac{{\varDelta} t_{k}}{{\varDelta} \left( {t_{k}^{H}}\right)} =\frac{t_{k}^{1-H}}{H}-\frac{(1-H)t_{k}^{1-2H}}{2H^{2}}\tau+O\left( \tau^{2}\right) $$
(B.4)

and

$$ \frac{\left( {\varDelta} t_{k}\right)^{2}}{{\varDelta} \left( {t_{k}^{H}}\right)}=\frac{t_{k}^{2-2H}}{H^{2}}\tau+O\left( \tau^{2}\right), $$
(B.5)

which implies that

$$ \begin{array}{l} R_{m,n}^{k}=-\frac{(1-H)t_{k}^{1-2H}}{2H^{2}}\tau\left( \frac{\partial u(x,y,t)}{\partial t}\right)_{m,n}^{k}-\frac{t_{k}^{2-2H}}{2H^{2}}\tau\left( \frac{\partial^{2} u(x,y,t)}{\partial t^{2}}\right)_{m,n}^{k}+O\left( \tau^{2}+h^{2}+l^{2}\right)\\ =O\left( \tau+h^{2}+l^{2}\right). \end{array} $$

For kk1,

$$ \left\|e^{k}\right\|_{L^{2}}<\left\|e^{0}\right\|_{L^{2}}+t_{k}^{2H}\max\limits_{0\le i\le k}\left\|R^{i}\right\|_{L^{2}}=O\left( \tau+h^{2}+l^{2}\right). $$
(B.6)

When kk1, combining (B.6) leads to

$$ \begin{array}{@{}rcl@{}} \left\|e^{k}\right\|_{L^{2}}&<&\left\|e^{k_{1}}\right\|_{L^{2}}+\tau (k-k_{1}) \left\|R^{k-1}\right\|_{L^{2}}\\ &\le&\left\|e^{0}\right\|_{L^{2}}+t_{k_{1}}^{2H} \max_{0\le i\le k_{1}}\left\|R^{i}\right\|_{L^{2}}+{t_{k}^{H}} \max_{k_{1}\le i\le k}\left\|R^{i}\right\|_{L^{2}}\\ &\le&\left( {t_{k}^{H}}+t_{\max}^{2H}\right)\max_{0\le i\le k}\left\|R^{i}\right\|_{L^{2}}\\&=&O\left( \tau+h^{2}+l^{2}\right). \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Deng, W. Numerical methods for the two-dimensional Fokker-Planck equation governing the probability density function of the tempered fractional Brownian motion. Numer Algor 85, 23–38 (2020). https://doi.org/10.1007/s11075-019-00800-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00800-z

Keywords

Navigation