Skip to main content
Log in

Galerkin finite element method for nonlinear fractional Schrödinger equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a class of nonlinear Riesz space-fractional Schrödinger equations are considered. Based on the standard Galerkin finite element method in space and Crank-Nicolson difference method in time, the semi-discrete and fully discrete systems are constructed. By Brouwer fixed point theorem and fractional Gagliardo-Nirenberg inequality, we prove the fully discrete system is uniquely solvable. Moreover, we focus on a rigorous analysis and consideration of the conservation and convergence properties for the semi-discrete and fully discrete systems. Finally, a linearized iterative finite element algorithm is introduced and some numerical examples are given to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G.D.: Finite difference discretization of the cubic Schrodinger̈ equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59(1), 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aruna, K., Kanth, A.R.: Approximate solutions of non-linear fractional Schrodinger equation via differential transform method and modified differential transform method. Natl. Acad. Sci. Lett. 36(2), 201–213 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bu, W., Liu, X., Tang, Y., Yang, J.: Finite element multigrid method for multi-term time fractional advection diffusion equations. Int. J. Mod. Sim. Sci. Comp. 6(1), 1540,001 (2015)

    Article  Google Scholar 

  5. Bu, W., Tang, Y., Wu, Y., Yang, J.: Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations. J. Comp. Phys. 293, 264–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bu, W., Tang, Y., Yang, J.: Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J. Comp. Phys. 276, 26–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. P.D.E. 32(8), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, C., Liu, F., Burrage, K.: Finite difference methods and a Fourier analysis for the fractional reaction–subdiffusion equation. Appl. Math. Comput. 198(2), 754–769 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. P.D.E. 22(3), 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrodinger̈ equation. Appl. Math. Comput. 204(1), 468–477 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Hajaiej, H., Yu, X., Zhai, Z.: Fractional Gagliardo–Nirenberg and Hardy inequalities under Lorentz norms. J. Math. Anal. Appl. 396(2), 569–577 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, J., Xin, J., Lu, H.: The global solution for a class of systems of fractional nonlinear Schrodinger̈ equations with periodic boundary condition. Comput. Math. Appl. 62(3), 1510–1521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrodinger̈ equation: the discontinuous Galerkin method. Math. Comput. 67(222), 479–499 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrodinger̈ equation: the continuous Galerkin method. SIAM. J. Numer. Anal. 36(6), 1779–1807 (1999)

    Article  MATH  Google Scholar 

  16. Khan, N.A., Jamil, M., Ara, A.: Approximate solutions to time-fractional Schrodinger̈ equation via homotopy analysis method. ISRN Math. Phys. 2012 (2012)

  17. Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62(3), 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212(2), 435–445 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comp. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  22. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrodinger̈ equation arising in quantum mechanics. Eng. Anal. Bound. Elem. 37(2), 475–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Books on Mathematics. Dover Publications, New York (2006)

    Google Scholar 

  25. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering, 1st edn, vol. 198. Academic Press, New York and London (1999)

  26. Ran, Y.H., Wang, J.G., Wang, D.L.: On HSS-like iteration method for the space fractional coupled nonlinear Schrödinger equations. Appl. Math. Comput. 271, 482–488 (2015)

    MathSciNet  Google Scholar 

  27. Roop, J.P.: Variational Solution of the Fractional Advection Dispersion Equation. Ph.D. thesis, Clemson University, South Carolina (2004)

    Google Scholar 

  28. Ross, B.: Fractional Calculus and Its Applications. Lecture Notes in Mathematics. Springer Verlag, Berlin (1975)

    Book  Google Scholar 

  29. Stefan, G., Samko, A.A.K., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, London (1993)

    MATH  Google Scholar 

  30. Wang, D., Xiao, A., Yang, W.: Crank–Nicolson difference scheme for the coupled nonlinear Schrodinger̈ equations with the Riesz space fractional derivative. J. Comp. Phys. 242, 670–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrodinger̈ equations. J. Comp. Phys. 272, 644–655 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, P., Huang, C.: A conservative linearized difference scheme for the nonlinear fractional Schrodinger̈ equation. Numer. Algoritm. 1–17 (2014)

  33. Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrodinger̈ equations. J. Comp. Phys. 293, 238–251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comp. Phys. 243, 382–399 (2013)

    Article  MATH  Google Scholar 

  35. Wei, L., He, Y., Zhang, X., Wang, S.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrodinger̈ equation. Finite Elem. Anal. Des. 59, 28–34 (2012)

    Article  MathSciNet  Google Scholar 

  36. Wyss, W.: The fractional diffusion equation. J. Math. Phys. 27(11), 2782–2785 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. App. Num. Mod. 34(1), 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, X., Zhang, H., Xu, D.: Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation. J. Comp. Phys. 256, 824–837 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, H., Liu, F., Anh, V.: Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl. Math. Comput. 217(6), 2534–2545 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36(6), A2865–A2886 (2014)

    Article  MATH  Google Scholar 

  41. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM. J. Numer. Anal. 47(3), 1760–1781 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Huang.

Additional information

This work was supported by NSF of China (No. 11371157) and NSF of Anhui Higher Education Institutions of China (No. KJ2016A492).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Huang, C. & Wang, P. Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer Algor 74, 499–525 (2017). https://doi.org/10.1007/s11075-016-0160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0160-5

Keywords

Navigation