Skip to main content
Log in

Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Let I :Ω→ℜ be a given bounded image function, where Ω is an open and bounded domain which belongs to ℜn. Let us consider n=2 for the purpose of illustration. Also, let S={xi}i∈Ω be a finite set of given points. We would like to find a contour Γ⊂Ω, such that Γ is an object boundary interpolating the points from S. We combine the ideas of the geodesic active contour (cf. Caselles et al. [7,8]) and of interpolation of points (cf. Zhao et al. [40]) in a level set approach developed by Osher and Sethian [33]. We present modelling of the proposed method, both theoretical results (viscosity solution) and numerical results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Adalsteinsson and J.A. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys. 118(2) (1995) 269–277.

    Google Scholar 

  2. L. Alvarez, P.-L. Lions and J.-M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal. 29(3) (1992) 845–866.

    Google Scholar 

  3. D. Apprato, J.B. Betbeder, C. Gout and A. Vieira-Testé, Segmentation method under geometric constraints after pre-processing, in: Curves and Surfaces, Vol. IV, eds. A. Cohen, C. Rabut and L.L. Schumaker (Vanderbilt Univ. Press, Nashville, TN, 2000) pp. 9–18.

    Google Scholar 

  4. G. Barles, Nonlinear Neumann Boundary Conditions for Quasilinear Degenerate Elliptic Equations and Applications, First version.

  5. G. Barles, Solutions de Viscosité des Équations de Hamilton–Jacobi (Springer, Berlin, 1994).

    Google Scholar 

  6. V. Caselles, F. Catté, C. Coll and F. Dibos, A geometric model for active contours in image processing, Numer. Math. 66 (1993) 1–31.

    Google Scholar 

  7. V. Caselles, R. Kimmel and G. Sapiro, Geodesic active contours, in: Proc. of the Fifth Internat. Conf. on Computer Vision (20–23 June 1995) pp. 694–699.

  8. V. Caselles, R. Kimmel and G. Sapiro, Geodesic active contours, Internat. J. Comput. Vision 22(1) (1997) 61–87.

    Google Scholar 

  9. T.F. Chan, B.Y. Sandberg and L.A. Vese, Active contours without edges for vector-valued images, J. Visual Communication Image Representation 11(2) (2000) 130.

    Google Scholar 

  10. T.F. Chan, J. Shen and L. Vese, Variational PDE models in image processing, Notices Amer. Math. Soc. 50(1) (2003) 14–26.

    Google Scholar 

  11. T.F. Chan and L.A. Vese, An efficient variational multiphase motion for the Mumford–Shah segmentation mode, in: IEEE Asilomar Conf. on Signals Systems and Computers, Vol. 1 (2000) pp. 490–494.

  12. T. Chan and L. Vese, Active contours without edges, IEEE Trans. Image Process. 10(2) (2001) 266–277.

    Google Scholar 

  13. I. Cohen and L.D. Cohen, Deformable models for 3D medical images using finite element and balloons, in: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Champaign (IEEE, Los Alamitos, 1992) pp. 592–598.

    Google Scholar 

  14. I. Cohen, L.D. Cohen and N. Ayache, Using deformable surfaces to segment 3D images and infer differential structures, Computer Vision 56(2) (1992) 242–263.

    Google Scholar 

  15. L.D. Cohen, On active contours models and balloons, Computer Vision 53(2) (1991) 211–218.

    Google Scholar 

  16. L.D. Cohen, E. Bardinet and N. Ayache, Surface reconstruction using active contour models, INRIA, Rapport de Recherche (1992).

  17. M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27(1) (1992) 1–69.

    Google Scholar 

  18. B.A. Dubrovin, A.T. Fomenko and S.P. Novikov, Modern geometry methods and applications, Part I, in: The Geometry of Surfaces, Transformation Groups, and Fields (Springer, Berlin, 1992).

    Google Scholar 

  19. A. Friedman, Partial Differential Equations of Parabolic Type (Prentice-Hall, Englewood Cliffs, NJ, 1964).

    Google Scholar 

  20. Y. Giga and M.-H. Sato, Generalized interface evolution with boundary condition, Proc. Japan Acad. Ser. A 67 (1991) 263–266.

    Google Scholar 

  21. C. Gout, C. Le Guyader and L. Vese, Image segmentation under interpolation conditions, Preprint, CAM-IPAM, University of California at Los Angeles (2003) 44 pages.

  22. C. Gout and S. Vieira-Testé, An algorithm for contrast enhancement and segmentation of images, in: IEEE Internat. Conf. on Image Processing, Vol. 2, Vancouver, Canada (2001) pp. 716–719.

  23. H. Ishii and M.-H. Sato, Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain, Preprint, Waseda (2001).

  24. M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active contour models, Internat. J. Comput. Vision 1(4) (1987) 133–144.

    Google Scholar 

  25. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi, Gradient flows and geometric active contour models, in: Proc. of the Fifth Internat. Conf. on Computer Vision (20–23 June 1995) pp. 810–815.

  26. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi, Conformal curvature flows: From phase transitions to active vision, Archive Rational Mech. Anal. 134(3) (1996) 275–301.

    Google Scholar 

  27. O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (Amer. Math. Soc., Providence, RI, 1968).

    Google Scholar 

  28. C. Le Guyader, Imagerie mathématique: Théory et applications, Thèse de doctorat, INSA Rouen (2004) en cours de rédaction.

  29. C. Le Guyader, D. Apprato and C. Gout, Using a level set approach for image segmentation under interpolation conditions, Numer. Algorithms (2003) submitted.

  30. R. Malladi and J.A. Sethian, Image processing via level curvature flow, Proc. National Acad. Sci. 92(15) (1995) 7046–7050.

    Google Scholar 

  31. R. Malladi, J.A. Sethian and B.C. Vermuri, A fast level set based algorithm for topology independent shape modeling and recovery, in: Proc. of the 3rd ECCV, Stockholm, Sweden (1994) pp. 3–13.

  32. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, Berlin, 2003).

    Google Scholar 

  33. S. Osher and J.A. Sethian, Fronts propagation with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys. 79 (1988) 12–49.

    MathSciNet  MATH  Google Scholar 

  34. J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Material Science (Cambridge Univ. Press, London, 1999).

    Google Scholar 

  35. J.A. Sethian, Evolution, implementation and application of level set and fast marching methods for advancing fronts, J. Comput. Phys. 169(2) (2001) 503–555.

    Google Scholar 

  36. J.A. Sethian, A review of recent numerical algorithms for surface s moving with curvature dependent flows, J. Differential Geometry 31 (1989) 131–161.

    Google Scholar 

  37. L. Vese, A method to convexify functions via curve evolution, Commun. Partial Differential Equations 24(9/10) (1999) 1573.

    Google Scholar 

  38. L.A. Vese, Study in the BV space of a denoising–deblurring variational problem, Appl. Math. Optim. 44(2) (2001) 131–162.

    Google Scholar 

  39. L.A. Vese and T.F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, Internat. J. Computer Vision 50(3) (2002) 271–293.

    Google Scholar 

  40. H.-K. Zhao, S. Osher, B. Merriman and M. Kang, Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method, Computer Vision Image Understanding 80(3) (2000) 295–314.

    Google Scholar 

  41. H.-K. Zhao, T. Chan, B. Merriman and S. Osher, A variational level set approach to multiphase motion, J. Comput. Phys. 127 (1996) 179–195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gout.

Additional information

AMS subject classification

49L25, 74G65, 68U10

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gout, C., Le Guyader, C. & Vese, L. Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods. Numer Algor 39, 155–173 (2005). https://doi.org/10.1007/s11075-004-3627-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-004-3627-8

Keywords

Navigation