Skip to main content
Log in

Singular-perturbation method for nonlinear second-order evolution inclusions with Volterra operators

  • Published:
Nonlinear Oscillations

We consider a class of second-order operator differential inclusions with Volterra-type operators. Using the singular-perturbation method, we study the problem of the existence of a solution of the Cauchy problem for these inclusions. Important a priori estimates are obtained for solutions and their derivatives. We give an example that illustrates the proposed approach to the analysis of the problem under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie, Berlin (1974).

    MATH  Google Scholar 

  2. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris (1969).

    MATH  Google Scholar 

  3. N. S. Papageorgiou, “Existence of solutions for the second order evolution inclusions,” J. Appl. Math. Stochast. Anal., 7, No. 4, 525–535 (1994).

    Article  MATH  Google Scholar 

  4. N. S. Papageorgiou and N. Yannakakis, “Second order nonlinear evolution inclusions II: Structure of the solution set,” Acta Math. Sinica, English Ser., 22, No. 1, 195–206 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  5. N. U. Ahmed and S. Kerbal, “Optimal control of nonlinear second order evolution equations,” J. Appl. Math. Stochast. Anal., No. 6, 123–136 (1993).

  6. L. Gasinsky and M. Smolka, “An existence theorem for wave-type hyperbolic hemivariational inequalities,” Math. Nachr., No. 242, 79–90 (2002).

    Google Scholar 

  7. A. Kartsatos and L. Markov, “An L 2-approach to second order nonlinear evolutions involving m-accretive operators in Banach spaces,” Different. Integral Equat., No. 14, 833–866 (2001).

  8. S. Migorsky, “Existence, variational and optimal control problems for nonlinear second order evolution inclusions,” Dynam. Syst. Appl., No. 4, 513–528 (1995).

    Google Scholar 

  9. I. V. Skrypnik, Methods for Investigation of Nonlinear Elliptic Boundary-Value Problems [in Russian], Nauka, Moscow (1990).

    MATH  Google Scholar 

  10. M. Z. Zgurovskii, V. S. Mel’nik, and A. N. Novikov, Applied Methods for Analysis and Control of Nonlinear Processes and Fields [in Russian], Kiev, Nauka (2004).

    Google Scholar 

  11. V. S. Mel’nik, “Topological methods in the theory of operator inclusions in Banach spaces,” Ukr. Mat. Zh., 58, No. 2, 184–194; No. 4, 573–595 (2006).

  12. P. O. Kas’yanov, “Galerkin method for a class of operator differential inclusions with set-valued mappings of pseudomonotone type,” Nauk. Visti Nats. Tekhn. Univ. Ukr. “KPI,” No. 2, 139–151 (2005).

  13. P. O. Kas’yanov, “Galerkin method for a class of operator differential inclusions,” Dopov. Nats. Akad. Nauk Ukr., No. 9, 20–24 (2005).

  14. P. O. Kas’yanov and V. S. Mel’nik, “Faedo–Galerkin method for operator differential inclusions in Banach spaces with mappings of w λ0-pseudomonotone type,” in: Collection of Works of the Institute of Mathematics of the Ukrainian National Academy of Sciences [in Ukrainian], Kyiv, Vol. 1 (2005), pp. 82–105.

  15. P. O. Kasyanov, V. S. Melnik, and V.V. Yasinsky, Evolution Inclusions and Inequalities in Banach Spaces with w λ -Pseudomonotone Maps, Kyiv, Naukova Dumka (2007).

    Google Scholar 

  16. N. V. Zadoyanchuk and P. O. Kas’yanov, “Faedo–Galerkin method for nonlinear evolution equations of the second order with Volterra operators,” Nelin. Kolyvannya, 10, No. 2, 204–228 (2007).

    MathSciNet  Google Scholar 

  17. N. V. Zadoyanchuk and P. O. Kas’yanov, “On the solvability of operator differential equations of the second order with noncoercive operators. Faedo–Galerkin method for nonlinear evolution equations of the second order with operators of the W λ0-pseudomonotone type,” Dopov. Nats. Akad. Nauk. Ukr., No. 12, 15–19 (2006).

    Google Scholar 

  18. J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  19. N. V. Zadoyanchuk and P. O. Kas’yanov, “Faedo–Galerkin method for evolution inclusions of the second order with W λ-pseudomonotone mappings,” Ukr. Mat. Zh., 61, No. 2, 195–213 (2009).

    Article  Google Scholar 

  20. P. O. Kas’yanov and V. S. Mel’nik, “On the solvability of operator differential inclusions and evolution variational inequalities generated by mappings of W λ0-pseudomonotone type,” Ukr. Mat. Visn., 4, No. 4, 536–582 (2007).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Zadoyanchuk.

Additional information

Translated from Neliniini Kolyvannya, Vol. 12, No. 1, pp. 27–43, January–March, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zadoyanchuk, N.V., Kas’yanov, P.O. Singular-perturbation method for nonlinear second-order evolution inclusions with Volterra operators. Nonlinear Oscill 12, 27–44 (2009). https://doi.org/10.1007/s11072-009-0057-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11072-009-0057-5

Keywords

Navigation