Skip to main content
Log in

On investigating dynamic coupling in floating platform and overhead crane interactions: modeling and control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In offshore crane systems, the floating platform motion has a significant impact on the dynamics of the cart motion. Nevertheless, previous studies have ignored the dynamic coupling interaction between the crane and the floating platform induced by changes in hydrostatic, hydrodynamic, and mooring loads affecting the offshore platform-crane system response. To address this problem, this study presents, firstly, a comprehensive model of the crane-platform dynamic coupling under realistic surge-roll-heave motions of the floating platform induced by ocean waves. While the payload motion can be known, the surge-roll-heave motions of the floating platform are considered unknown. Therefore, secondly, we propose an output feedback control approach that combines a state feedback controller and an extended high-gain observer to primarily achieve desired trajectories of the cart motion under unknown payload mass, dynamic friction, dynamic coupling, and external disturbances. The extended high-gain observer uses the measured displacement of the cart to estimate the dynamic states and external disturbances, providing the state feedback controller with the necessary information and increasing the robustness of the control system. The effectiveness of the proposed model-based control approach under unknown dynamic and wave motion disturbances is verified through simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availibility Statement

All data underlying the results are available as a part of the article, and no additional source data are required.

Abbreviations

\(\phi \) :

Platform roll motion (rad)

\(\theta \) :

Cable swing angle  (rad)

\(d_{\textrm{AL}}\) :

Fixed position of the left anchor  (m)

\(d_{\textrm{AR}}\) :

Fixed position of the right anchor  (m)

\(d_{\textrm{fL}}\) :

Positions of the left fairleads relative to G  (m)

\(d_{fp}\) :

Platform diameter  (m)

\(d_{\textrm{fR}}\) :

Positions of the right fairleads relative to G  (m)

\(d_{G}\) :

Depth of the platform center of mass below the water level  (m)

\(d_{sb}\) :

Water depth  (m)

\(F_{cx}\) :

Controlled force of the cart  (N)

h :

The height of the overhead crane  (m)

\(H_{\textrm{a}}\) :

Wave elevation amplitude  (m)

\(I_{fp}\) :

Platform moment of inertia  (kg m\(^{2}\))

L :

Crane cable length  (m)

\(l_{fp}\) :

Platform length  (m)

\(m_\textrm{c}\) :

Cart mass  (kg)

\(m_\textrm{p}\) :

Payload mass  (kg)

\(m_{fp}\) :

Platform mass  (kg)

X :

Platform surge motion  (m)

x :

Cart horizontal motion  (m)

Z :

Platform heave motion  (m)

References

  1. Hong, K.-S., Ngo, Q.H.: Dynamics of the container crane on a mobile harbor. Ocean Eng. 53, 16–24 (2012)

    Article  Google Scholar 

  2. Lee, D.-H., Kim, T.-W., Park, H.-C., Kim, Y.-B.: A study on the modeling and dynamic analysis of the offshore crane and payload. J. Korean Soc. Fish. Ocean Technol. 56(1), 61–70 (2020)

    Article  Google Scholar 

  3. Cha, J.-H., Roh, M.-I., Lee, K.-Y.: Dynamic response simulation of a heavy cargo suspended by a floating crane based on multibody system dynamics. Ocean Eng. 37(14–15), 1273–1291 (2010)

    Article  Google Scholar 

  4. Ham, S.-H., Roh, M.-I., Lee, H., Hong, J.-W., Lee, H.-R.: Development and validation of a simulation-based safety evaluation program for a mega floating crane. Adv. Eng. Softw. 112, 101–116 (2017)

    Article  Google Scholar 

  5. Ruud, S., Mikkelsen, Å.: Risk-based rules for crane safety systems. Reliab. Eng. Syst. Saf. 93(9), 1369–1376 (2008)

    Article  Google Scholar 

  6. Fang, Y., Wang, P., Sun, N., Zhang, Y.: Dynamics analysis and nonlinear control of an offshore boom crane. IEEE Trans. Ind. Electron. 61(1), 414–427 (2013)

    Article  Google Scholar 

  7. Wang, S., Sun, Y., Chen, H., Du, J.: Dynamic modelling and analysis of 3-axis motion compensated offshore cranes. Ships Offshore Struct. 13(3), 265–272 (2018)

    Article  Google Scholar 

  8. Lu, B., Lin, J., Fang, Y., Hao, Y., Cao, H.: Online trajectory planning for three-dimensional offshore boom cranes. Autom. Constr. 140, 1–12 (2022)

    Article  Google Scholar 

  9. Chen, H., Sun, N.: An output feedback approach for regulation of 5-dof offshore cranes with ship yaw and roll perturbations. IEEE Trans. Ind. Electron. 69(2), 1705–1716 (2022)

    Article  Google Scholar 

  10. Qian, Y., Hu, D., Chen, Y., Fang, Y.: Programming-based optimal learning sliding mode control for cooperative dual ship-mounted cranes against unmatched external disturbances. IEEE Trans. Autom. Sci. Eng. 20(2), 969–980 (2023)

    Article  Google Scholar 

  11. Qian, Y., Hu, D., Chen, Y., Fang, Y., Hu, Y.: Adaptive neural network-based tracking control of underactuated offshore ship-to-ship crane systems subject to unknown wave motions disturbances. IEEE Trans. Syst. Man Cybern. Syst. 52(6), 3626–3637 (2021)

    Article  Google Scholar 

  12. Bae, J.-H., Cha, J.-H., Ha, S.: Heave reduction of payload through crane control based on deep reinforcement learning using dual offshore cranes. J. Comput. Des. Eng. 10(1), 414–424 (2023)

    Google Scholar 

  13. Cao, Y., Li, T.: Review of antiswing control of shipboard cranes. IEEE/CAA J. Autom. Sin. 7(2), 346–354 (2020)

    Article  Google Scholar 

  14. Qian, Y., Fang, Y., Lu, B.: Adaptive repetitive learning control for an offshore boom crane. Automatica 82, 21–28 (2017)

    Article  MathSciNet  Google Scholar 

  15. Qian, Y., Fang, Y.: Switching logic-based nonlinear feedback control of offshore ship-mounted tower cranes: a disturbance observer-based approach. IEEE Trans. Autom. Sci. Eng. 16(3), 1125–1136 (2018)

    Article  Google Scholar 

  16. Qian, Y., Fang, Y., Lu, B.: Adaptive robust tracking control for an offshore ship-mounted crane subject to unmatched sea wave disturbances. Mech. Syst. Signal Process. 114, 556–570 (2019)

    Article  Google Scholar 

  17. Bozkurt, B., Ertogan, M.: Heave and horizontal displacement and anti-sway control of payload during ship-to-ship load transfer with an offshore crane on very rough sea conditions. Ocean Eng. 267, 113309 (2023)

    Article  Google Scholar 

  18. Chen, Y., Qian, Y., Hu, D.: Nonlinear vibration suppression control of underactuated shipboard rotary cranes with spherical pendulum and persistent ship roll disturbances. Ocean Eng. 241, 1–9 (2021)

    Article  Google Scholar 

  19. Hu, D., Qian, Y., Fang, Y., Chen, Y.: Modeling and nonlinear energy-based anti-swing control of underactuated dual ship-mounted crane systems. Nonlinear Dyn. 106, 323–338 (2021)

    Article  Google Scholar 

  20. Yang, T., Sun, N., Chen, H., Fang, Y.: Adaptive optimal motion control of uncertain underactuated mechatronic systems with actuator constraints. IEEE/ASME Trans. Mechatron. vol. Early Access 1–13 (2022)

  21. Baruh, H.: Analytical Dynamics. WCB/McGraw-Hill, Boston (1999)

    Google Scholar 

  22. Al-Solihat, M.K., Al Janaideh, M.: Dynamic modeling and nonlinear oscillations of a rotating pendulum with a spinning tip mass. J. Sound Vib. 548, 117485 (2023)

    Article  Google Scholar 

  23. Al-Solihat, M., Nahon, M.: Nonlinear hydrostatic restoring of floating platforms. J. Comput. Nonlinear Dyn. 10(4), 1–11 (2015)

    Google Scholar 

  24. Al-Solihat, M., Nahon, M.: Flexible multibody dynamic modeling of a floating wind turbine. Int. J. Mech. Sci. 142, 518–529 (2018)

    Article  Google Scholar 

  25. Biran, A.: Ship Hydrostatics and Stability. Butterworth-Heinemann, Oxford (2003)

    Google Scholar 

  26. Sarpkaya, T., Isaacson, M.: Mechanics of Wave Forces on Offshore Structures. Van Nostrand Reinhold, New York (1981)

    Google Scholar 

  27. Wilson, J.F.: Dynamics of Offshore Structures. Wiley, New York (2003)

    Google Scholar 

  28. DNV-RP-C205: Environmental conditions and environmental loads. Recommended practice, Det Norske Veritas (2007)

  29. Al-Solihat, M.K., Nahon, M., Behdinan, K.: Dynamic modeling and simulation of a spar floating offshore wind turbine with consideration of the rotor speed variations. J. Dyn. Syst. Meas. Contr. 141(8), 081014 (2019)

    Article  Google Scholar 

  30. Blevins, R.D.: Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold Co., New York (1979)

    Google Scholar 

  31. Chakrabarti, S.K.: Hydrodynamics of Offshore Structures. WIT press, New York (1987)

    Google Scholar 

  32. Al-Solihat, M.K., Nahon, M.: Stiffness of slack and taut moorings. Ships Offshore Struct. 11(8), 890–904 (2016)

    Article  Google Scholar 

  33. Masciola, M., Nahon, M., Driscoll, F.: Preliminary assessment of the importance of platform-tendon coupling in a tension leg platform. J. Offshore Mech. Arct. Eng. 135(3), 031901 (2013)

    Article  Google Scholar 

  34. Sun, N., Fang, Y., Chen, H.: A new antiswing control method for underactuated cranes with unmodeled uncertainties: theoretical design and hardware experiments. IEEE Trans. Ind. Electron. 62(1), 453–465 (2014)

  35. Khalil, H.: Extended high-gain observers as disturbance estimators. SICE J. Control Meas. Syst. Integr. 10, 125–134 (2017)

    Article  Google Scholar 

  36. Esfandiari, F., Khalil, H.: Output feedback stabilization of fully linearizable systems. Int. J. Control 56(5), 1007–1037 (1992)

  37. Khalil, H.: High-Gain Observers in Nonlinear Feedback Control. SIAM, Philadelphia (2017)

    Book  Google Scholar 

  38. Khalil, H.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  39. Ismail, R., That, N., Ha, Q.: Modelling and robust trajectory following for offshore container crane systems. Autom. Constr. 59, 179–187 (2015)

    Article  Google Scholar 

  40. Sun, N., Fang, Y., Zhang, Y., Ma, B.: A novel kinematic coupling-based trajectory planning method for overhead cranes. IEEE/ASME Trans. Mechatron. 17(1), 166–173 (2011)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ocean Frontier Institute, Alexander Murray Building, Room ER 2003 St. John’s, NL A1B 3X5, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Al Saaideh.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khair Al-Solihat, M., Al Saaideh, M., Al-Rawashdeh, Y.M. et al. On investigating dynamic coupling in floating platform and overhead crane interactions: modeling and control. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09676-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09676-8

Keywords

Navigation