Skip to main content
Log in

A double stochastic SIS network epidemic model with nonlinear contact rate and limited medical resources

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper explores a double stochastic network epidemic model within the constraints of limited medical resources and nonlinear contact rate. Initially, we investigate the dynamic behavior of this infectious disease model. Subsequently, we explore how the intensity of volatility and the speed of reversion influence the model’s dynamics. Moreover, we present the outcomes of simulations conducted on this double stochastic network model. These simulations shed light on the repercussions of various factors, such as the intensity of volatility, the speed of reversion, the intensity of white noise, the availability of limited medical resources, and the nonlinear contact rate on the dynamics of the epidemic. Lastly, we delve into the impact of the intensity of volatility and the speed of reversion on the spread of infectious diseases through a comprehensive examination of smooth distributions. In conclusion, our findings have unveiled the intrinsic mechanisms governing the dynamic changes in this double stochastic epidemic model. Furthermore, our study places a strong emphasis on the influence of volatility intensity and the speed of the reversion within the mean-reverting Ornstein–Uhlenbeck processes on the propagation of infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Daley, D.J., Gani, J.: Epidemic Modelling: An Introduction. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  2. Ruzhansky, M.: Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact. Springer, Berlin (2021)

    Google Scholar 

  3. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-I. Bull. Math. Biol. 53(1–2), 33–55 (1991). https://doi.org/10.1007/bf02464423

    Article  Google Scholar 

  4. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-II. The problem of endemicity. Bull. Math. Biol. 53(1–2), 57–87 (1991). https://doi.org/10.1007/BF02464424

    Article  Google Scholar 

  5. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-III. Further studies of the problem of endemicity. Bull. Math. Biol. 53(1–2), 89–118 (1991). https://doi.org/10.1007/BF02464424

    Article  Google Scholar 

  6. Avinash, N., Britto, A.X., et al.: Dynamics of COVID-19 using SEIQR epidemic model. J. Math. 2022, 2138365–2138386 (2022). https://doi.org/10.1155/2022/2138165

    Article  MathSciNet  Google Scholar 

  7. Zeb, A., Alzahrani, E., et al.: Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class. Biomed. Res. Int. 2020, 3452402–3452409 (2020). https://doi.org/10.1155/2020/3452402

    Article  Google Scholar 

  8. Rahimi, I., Gandomi, A.H., et al.: Analysis and prediction of COVID-19 Using SIR, SEIQR, and machine learning models: Australia, Italy, and UK Cases. Information 12(3), 109–132 (2021). https://doi.org/10.3390/info12030109

    Article  Google Scholar 

  9. Hussain, T., Muhammad, O., et al.: Sensitivity analysis and optimal control of COVID-19 dynamics based on SEIQR model. Results Phys. 22, 103956–103967 (2021). https://doi.org/10.1016/j.rinp.2021.103956

    Article  Google Scholar 

  10. Hamdy, Y., Najat, A., et al.: Study on the SEIQR model and applying the epidemiological rates of COVID-19 epidemic spread in Saudi Arabia. Infect. Dis. Model. 6, 678–692 (2021). https://doi.org/10.1016/j.idm.2021.04.005

    Article  Google Scholar 

  11. Kheifetz, Y., Kirsten, H., Scholz, M.: On the parametrization of epidemiologic models-lessons from modelling COVID-19 epidemic. Viruses 14(7), 1468–1505 (2022). https://doi.org/10.3390/v14071468

    Article  Google Scholar 

  12. Sun, C., Chao, L., et al.: Modeling and preliminary analysis of the impact of meteorological conditions on the COVID-19 epidemic. Int. J. Environ. Res. Public Health 19(10), 6125–6139 (2022). https://doi.org/10.3390/ijerph19106125

    Article  Google Scholar 

  13. Malik, A., Kumar, N., Alam, K.: Estimation of parameter of fractional order COVID-19 SIQR epidemic model. Mater. Today Proc. 49, 3265–3269 (2022). https://doi.org/10.1016/j.matpr.2020.12.918

    Article  Google Scholar 

  14. Prodanov, D.: Analytical parameter estimation of the SIR epidemic model. Applications to the COVID-19 pandemic. Entropy 23(1), 59–79 (2020). https://doi.org/10.1007/978-1-4471-2464-1_16

    Article  MathSciNet  Google Scholar 

  15. Pal, D., Ghosh, D., et al.: Mathematical analysis of a COVID-19 epidemic model by using data driven epidemiological parameters of diseases spread in India. Biophysics 67(2), 231–244 (2022). https://doi.org/10.1134/S0006350922020154

    Article  Google Scholar 

  16. Ai, H., Nie, R., Wang, X.: Evaluation of the effects of meteorological factors on COVID-19 prevalence by the distributed lag nonlinear model. J. Transl. Med. 20(1), 1–9 (2022). https://doi.org/10.1186/s12967-022-03371-1

    Article  Google Scholar 

  17. Tang, L., Wang, W., et al.: Time-lag rumor propagation model and rumor-refuting strategy of SEIRD under COVID-19. Chin. J. Eng. 44(6), 1080–1089 (2022). https://doi.org/10.13374/j.issn2095-9389.2021.03.16.005

    Article  Google Scholar 

  18. Wei, H., Liu, S., et al.: The impact of meteorological factors on COVID-19 of California and its lag effect. Meteorol. Appl. 29(1), 1–16 (2022). https://doi.org/10.1002/met.2045

    Article  Google Scholar 

  19. Chowdhury, S.M.E.K., Chowdhury, J.T., et al.: Mathematical modelling of COVID-19 disease dynamics: interaction between immune system and SARS-CoV-2 within host. AIMS Math. 7(2), 2618–2633 (2022). https://doi.org/10.3934/math.2022147

    Article  MathSciNet  Google Scholar 

  20. Agarwal, P., Ramadan, M.A., et al.: A fractional-order mathematical model for analyzing the pandemic trend of COVID-19. Math. Methods Appl. Sci. 45(8), 4625–4642 (2022). https://doi.org/10.1002/mma.8057

    Article  MathSciNet  Google Scholar 

  21. Sanjay, K., et al.: Analysis of COVID-19 outbreak using GIS and SEIR model. Fract. Order Syst. Appl. Eng. (2023). https://doi.org/10.1016/B978-0-32-390953-2.00020-7

    Article  Google Scholar 

  22. Li, Y., Wei, Z.: Dynamics and optimal control of a stochastic coronavirus (COVID-19) epidemic model with diffusion. Nonlinear Dyn. 109(1), 91–120 (2021). https://doi.org/10.1007/s11071-021-06998-9

    Article  Google Scholar 

  23. Ikram, R., Khan, A., et al.: Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay. Comput. Biol. Med. 141, 105–115 (2022). https://doi.org/10.1016/j.compbiomed.2021.105115

    Article  Google Scholar 

  24. Khan, A., Ikram, R., et al.: Extinction and persistence of a stochastic delayed Covid-19 epidemic model. Comput. Methods Biomech. Biomed. Engin. 26(4), 424–437 (2023). https://doi.org/10.1080/10255842.2022.2065631

    Article  Google Scholar 

  25. Bodini, A., Pasquali, S., et al.: Underdetection in a stochastic SIR model for the analysis of the COVID-19 Italian epidemic. Stoch. Env. Res. Risk Assess. 36(1), 137–155 (2022). https://doi.org/10.1007/s00477-021-02081-2

    Article  Google Scholar 

  26. Khan, T., Zaman, G., et al.: Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model. Alex. Eng. J. 60(4), 4121–4130 (2021). https://doi.org/10.1016/j.rinp.2021.104004

    Article  Google Scholar 

  27. Hou, T., Lan, G., et al.: Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate. Math. Biosci. Eng. 19(4), 4217–4236 (2022). https://doi.org/10.3934/mbe.2022195

    Article  MathSciNet  Google Scholar 

  28. Ma, J., Lin, W.: Dynamics of a stochastic COVID-19 epidemic model considering asymptomatic and isolated infected individuals. Math. Biosci. Eng. 19(5), 5169–5189 (2022). https://doi.org/10.3934/mbe.2022242

    Article  MathSciNet  Google Scholar 

  29. Tesfay, A., Saeed, T., et al.: Dynamics of a stochastic COVID-19 epidemic model with jump-diffusion. Adv. Difference Equ. 2021(1), 228–247 (2021). https://doi.org/10.1186/s13662-021-03396-8

    Article  MathSciNet  Google Scholar 

  30. Olabode, D., Culp, J., et al.: Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China. Math. Biosci. Eng. 18(1), 950–967 (2021). https://doi.org/10.1016/j.physa.2018.06.099

    Article  MathSciNet  Google Scholar 

  31. Wang, W.W., Cai, Y.L., et al.: A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process. Phys. A 509, 921–926 (2018). https://doi.org/10.3934/mbe.2021050

    Article  MathSciNet  Google Scholar 

  32. Cai, Y.L., Jiao, J.J., et al.: Environmental variability in a stochastic epidemic model. Appl. Math. Comput. 329, 210–226 (2018). https://doi.org/10.1016/j.amc.2018.02.009

    Article  MathSciNet  Google Scholar 

  33. Rehman, A.U., Singh, R., et al.: Modeling, analysis and prediction of new variants of Covid-19 and dengue co-infection on complex network. Chaos Solitons Fractals 150(1), 111008–111027 (2021). https://doi.org/10.1016/j.chaos.2021.111008

    Article  MathSciNet  Google Scholar 

  34. Wang, B., Ke, H.H., et al.: Epidemic spreading in scale-free networks based on clique-overlapping growth. Adv. Inf. Sci. Serv. Sci. 4(6), 210–218 (2012). https://doi.org/10.4156/aiss.vol4.issue6.25

    Article  Google Scholar 

  35. Liu, Q., Li, B., Sun, M.: Global dynamics of an SIRS epidemic model with distributed delay on heterogeneous network. Math. Probl. Eng. 2017, 1–9 (2017). https://doi.org/10.1155/2017/6376502

    Article  MathSciNet  Google Scholar 

  36. Huang, S., Chen, F., Chen, L.: Global dynamics of a network-based SIQRS epidemic model with demographics and vaccination. Commun. Nonlinear Sci. Numer. Simul. 43, 296–310 (2017). https://doi.org/10.1016/j.cnsns.2016.07.014

    Article  MathSciNet  Google Scholar 

  37. Zhang, H.F., Fu, X.C.: Spreading of epidemics on scale-free networks with nonlinear infectivity. Nonlinear Anal. 70(9), 3273–3278 (2009). https://doi.org/10.1016/j.na.2008.04.031

    Article  MathSciNet  Google Scholar 

  38. Zhu, G., Fu, X., et al.: Global attractivity of a network-based epidemic SIS model with nonlinear infectivity. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2588–2594 (2012). https://doi.org/10.1016/j.cnsns.2011.08.039

    Article  MathSciNet  Google Scholar 

  39. Wang, W.: Backward bifurcation of an epidemic model with treatment. Math. Biosci. 201(1–2), 58–71 (2006). https://doi.org/10.1016/j.mbs.2005.12.022

    Article  MathSciNet  Google Scholar 

  40. Zhou, L., Fan, M.: Dynamics of an SIR epidemic model with limited medical resources revisited. Nonlinear Anal. Real World Appl. 13(1), 312–324 (2012). https://doi.org/10.1016/j.nonrwa.2011.07.036

    Article  MathSciNet  Google Scholar 

  41. Yang, Q., Jiang, D., et al.: The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J. Math. Anal. Appl. 388(1), 248–271 (2017). https://doi.org/10.1016/j.jmaa.2011.11.072

    Article  MathSciNet  Google Scholar 

  42. Friedman, A.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1976)

    Google Scholar 

  43. Mao, X.R.: Stochastic Differential Equations and Applications. Woodhead Publishing Limited Press, New Delhi (2011)

  44. Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Process. Appli. 97(1), 95–110 (2002). https://doi.org/10.1016/S0304-4149(01)00126-0

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the National Natural Science Foundation of China (No. 12075162), the Sichuan Federation of Social Science Associations (No. SC20TJ016), the Sichuan Science and Technology Department(No. 2020YJ0357) and the VC & VR Key Laboratory of Sichuan Province.

Funding

This Research Project is supported by the youth Foundation of National Natural Science Foundation of China (11601357), Application Basic Project of Sichuan Provincial Science and Technology Department (2017JY0159) and Sichuan Provincial Key Laboratory Fund of Visual Computing and Virtual Reality (SCVCVR2018.08VS).

Author information

Authors and Affiliations

Authors

Contributions

JS did investigation, writing—original draft. WL done resources, funding acquisition, and supervision. YD and ZS investigated the study.

Corresponding author

Correspondence to Wangyong Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Lv, W., Deng, Y. et al. A double stochastic SIS network epidemic model with nonlinear contact rate and limited medical resources. Nonlinear Dyn 112, 6743–6760 (2024). https://doi.org/10.1007/s11071-024-09291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09291-7

Keywords

Navigation