Skip to main content
Log in

Robust adaptive flexible prescribed performance tracking and vibration control for rigid–flexible coupled robotic systems with input quantization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

With the increasing demands for more flexibility, lighter weight, and larger working space of industrial robotic systems in many fields, the rigid–flexible coupled robotic systems attract more attention. In this work, the desired angular tracking and vibration suppression issues are investigated for the rigid–flexible coupled robotic systems (RFCRSs) in the presence of input quantization. The vibrating displacement is coupled nonlinear due to the coupling between two joints’ angular positions and flexible displacements. Using the assumed mode principle, the nonlinear infinite-dimension dynamics of rigid–flexible coupled robotic systems are reduced by ordinary differential equations. With the backstepping-based Lyapunov method, robust adaptive flexible prescribed performance control (FPPC) law is developed to track the given angular positions and to reduce the vibration oscillations. Besides, the robust adaptive update law is incorporated into the quantized FPPC for estimating the unknown parameters of logarithmic quantizers in the face of input quantization. In terms of the above robust adaptive FPPC control, the tracking errors of the RFCRSs eventually converge to a compact set in face of input quantization. At last, three comparison cases are implemented to verify the efficacy of the proposed robust adaptive FPPC strategy in comparison with the PD feedback law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. He, W., He, X.Y., Ge, S.S.: Boundary output feedback control of a flexible string system with input saturation. Nonlinear Dyn. 80, 871–888 (2015)

    Article  MathSciNet  Google Scholar 

  2. Souza, A.G., Souza, L.C.G.: Design of a controller for a rigid–flexible satellite using the H-infinity method considering the parametric uncertainty. Mech. Syst. Signal Proc. 116, 641–650 (2019)

    Article  Google Scholar 

  3. Liu, Z.J., Shi, J., He, Y., Zhao, Z.J., Lam, H.K.: Adaptive fuzzy control for a spatial flexible hose system with dynamic event-triggered mechanism. IEEE Trans. Aerosp. Electron. Syst. 59(2), 1156–1167 (2023)

    Google Scholar 

  4. Wang, Y., Yu, F.J., Li, Q.Z., Chen, Y.: Dual-space configuration synthesis method for rigid-flexible coupled cable-driven parallel mechanisms. Ocean Eng. 271, 113753 (2023)

    Article  Google Scholar 

  5. He, W., Meng, T.T., He, X.Y., Ge, S.Z.: Unified iterative learning control for flexible structures with input constraints. Automatica 96, 326–336 (2018)

    Article  MathSciNet  Google Scholar 

  6. Tian, L.F., Collins, C.: A dynamic recurrent neural network-based controller for a rigid-flexible manipulator system. Mechatronics 14(5), 471–490 (2004)

    Article  Google Scholar 

  7. Lochan, K., Roy, B.K., Subudhi, B.: A review on two-link flexible manipulators. Annu. Rev. Control 42, 346–367 (2016)

    Article  Google Scholar 

  8. Meng, T., He, W., He, X.: Tracking control of a flexible string system based on iterative learning control. IEEE Trans. Contr. Syst. Tech. 29(1), 436–443 (2021)

    Article  Google Scholar 

  9. Zhou, X.Y., Tian, Y., Wang, H.P.: Neural network state observer-based robust adaptive fault-tolerant quantized iterative learning control for the rigid–flexible coupled robotic systems with unknown time delays. Appl. Math. Comput. 430, 127286 (2022)

    MathSciNet  Google Scholar 

  10. Zhao, Z.J., Liu, Z.J., He, W., Hong, K.S., Li, H.X.: Boundary adaptive fault-tolerant control for a flexible Timoshenko arm with backlash-like hysteresis. Automatica 130, 109690 (2021)

    Article  MathSciNet  Google Scholar 

  11. Liu, Z.J., Zhao, Z., Ahn, C.K.: Boundary constrained control of flexible string systems subject to disturbances. IEEE Trans. Circuit Syst. II Exp. Br. 67(1), 112–116 (2020)

    Google Scholar 

  12. Zhang, S., Liu, R., Peng, K., He, W.: Boundary output feedback control for a flexible two-link manipulator system with high-gain observers. IEEE Trans. Control Syst. Tech. 29(2), 835–840 (2021)

    Article  Google Scholar 

  13. Cao, F.F., Liu, J.K.: Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance. Int. J. Control 91(5), 1091–1103 (2018)

    Article  MathSciNet  Google Scholar 

  14. Han, F., Jia, Y.: Sliding mode boundary control for a planar two-link rigid-flexible manipulator with input disturbances. Int. J. Control Autom. Syst. 18, 351–362 (2020)

    Article  Google Scholar 

  15. Zhao, Z.J., He, X., Ahn, C.K.: Boundary disturbance observer-based control of a vibrating single-link flexible manipulator. IEEE Trans. Syst. Man Cyber. Syst. 51(4), 2382–2390 (2021)

    Article  Google Scholar 

  16. Xie, D., Jian, K., Wen, W.: An element-free Galerkin approach for rigid-flexible coupling dynamics in 2D state. Appl. Math. Comput. 310, 149–168 (2017)

    MathSciNet  Google Scholar 

  17. Hao, T., Wang, H., Xu, F., Wang, J., Miao, Y.: Uncalibrated visual servoing for a planar two link rigid-flexible manipulator without joint-space-velocity measurement. IEEE Trans. Syst. Man Cyber. Syst. 52(3), 1935–1947 (2022)

    Article  Google Scholar 

  18. Meng, Q., Lai, X., Yan, Z., Wu, M.: Tip position control and vibration suppression of a planar two-link rigid–flexible underactuated manipulator. IEEE Trans. Cyber. 52(7), 6771–6783 (2022)

    Article  Google Scholar 

  19. Gao, H., He, W., Zhou, C., Sun, C.: Neural network control of a two-link flexible robotic manipulator using assumed mode method. IEEE Trans. Ind. Inform. 15(2), 755–765 (2019)

    Article  Google Scholar 

  20. Gao, H., He, W., Song, Y., Zhang, S., Sun, C.: Modeling and neural network control of a flexible beam with unknown spatiotemporally varying disturbance using assumed mode method. Neurocomputing 314, 458–467 (2018)

    Article  Google Scholar 

  21. Meng, Q., Lai, X., Yan, Z., Su, C.Y., Wu, M.: Motion planning and adaptive neural tracking control of an uncertain two-link rigid-flexible manipulator with vibration amplitude constraint. IEEE Trans. Neural Netw. Learn. Syst. 33(8), 3814–3828 (2022)

    Article  MathSciNet  Google Scholar 

  22. Zhou, X.Y., Wang, H.P., Tian, Y., Zheng, G.: Neural network state observer-based robust adaptive iterative learning output feedback control for the rigid-flexible coupled robotic systems with unknown delays and backlash-like hysteresis. Nonlinear Dyn. 110, 1515–1542 (2022)

    Article  Google Scholar 

  23. Liu, Z.J., Han, Z., He, W.: Adaptive fault-tolerant boundary control of an autonomous aerial refueling hose system with prescribed constraints. IEEE Trans. Autom. Sci. Eng. 19(4), 2678–2688 (2022)

    Article  Google Scholar 

  24. Karayiannidis, Y., Doulgeri, Z.: Model-free robot joint position regulation and tracking with prescribed performance guarantees. Robot Auton. Syst. 60(2), 214–226 (2012)

    Article  Google Scholar 

  25. Bechlioulis, C.P., Rovithakis, A.: Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45(6), 532–538 (2016)

    MathSciNet  Google Scholar 

  26. Kostarigka, A.K., Doulgeri, Z., Rovithakis, G.A.: Prescribed performance tracking for flexible joint robots with unknown dynamics and variable elasticity. Automatica 49(5), 1137–1147 (2013)

    Article  MathSciNet  Google Scholar 

  27. Shao, X., Hu, Q., Shi, Y., Jiang, B.: Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation. IEEE Trans Control Syst. Tech. 28(2), 574–582 (2020)

    Article  Google Scholar 

  28. Dimanidis, I.S., Bechlioulis, C.P., Rovithakis, G.A.: Output feedback approximation-free prescribed performance tracking control for uncertain MIMO nonlinear systems. IEEE Trans. Autom. Control 65(12), 5058–5069 (2020)

    Article  MathSciNet  Google Scholar 

  29. Jia, F.J., Wang, X.H., Zhou, X.Y.: Robust adaptive prescribed performance control for a class of nonlinear pure-feedback systems. Int. J. Robust Nonlinear Control 29, 3971–3987 (2019)

    Article  MathSciNet  Google Scholar 

  30. Liu, A., Yu, L., Zhang, W., Chen, M.Z.Q.: Moving horizon estimation for networked systems with quantized measurements and packet dropouts. IEEE Trans. Circuits Syst. I Reg. Pap. 60(7), 1823–1834 (2013)

    Article  MathSciNet  Google Scholar 

  31. Wang, C.L., Wen, C.Y., Lin, Y., Wang, W.: Decentralized adaptive tracking control for a class of interconnected nonlinear systems with input quantization. Automatica 81, 359–368 (2017)

    Article  MathSciNet  Google Scholar 

  32. Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Control. 45(7), 1279–1289 (2000)

    Article  MathSciNet  Google Scholar 

  33. Yao, D.Y., Li, H.Y., Shi, Y.: Adaptive event-triggered sliding mode control for consensus tracking of nonlinear multi-agent systems with unknown perturbations. IEEE Trans. Cybern. 53(4), 2672–2684 (2023)

    Article  Google Scholar 

  34. Xing, L., Wen, C., Zhu, Y., Su, H.: Output feedback control for uncertain nonlinear systems with input quantization. Automatica 65, 191–202 (2016)

    Article  MathSciNet  Google Scholar 

  35. Zhao, X.N., Zhang, S., Liu, Z.J., Wang, J., Gao, H.B.: Adaptive event-triggered boundary control for a flexible manipulator with input quantization. IEEE/ASME Trans. Mechatron. 27(5), 3706–3716 (2021)

    Article  Google Scholar 

  36. Ji, N., Liu, J.K.: Adaptive boundary control for flexible three-dimensional Euler-Bernoulli beam with input signal quantization. Int. J. Adapt. Control Signal Process. 32, 1162–1181 (2018)

    Article  MathSciNet  Google Scholar 

  37. Cao, F.F., Liu, J.K.: Boundary vibration control for a two-link rigid-flexible manipulator with quantized input. J. Vib. Control 25(23–24), 2935–2945 (2019)

    Article  MathSciNet  Google Scholar 

  38. Yao, D.Y., Li, H.Y., Shi, Y.: Event-based average consensus of disturbed MASs via fully distributed sliding mode control. IEEE Trans. Autom. Control (2023). https://doi.org/10.1109/TAC.2023.3317505

    Article  Google Scholar 

  39. Yigit, A.S.: On the stability of PD control for a two-link rigid-flexible manipulator. J. Dyn. Syst. Meas. Control 116(2), 208–215 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under grant numbers [Grant Nos. 62173182, 61773212]; and the international science and technology innovation cooperation key project [Grant No. 2021YFE0102700];

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, H. & Tian, Y. Robust adaptive flexible prescribed performance tracking and vibration control for rigid–flexible coupled robotic systems with input quantization. Nonlinear Dyn 112, 1951–1969 (2024). https://doi.org/10.1007/s11071-023-09139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09139-6

Keywords

Navigation