Skip to main content

Advertisement

Log in

Abnormalities of rhythms and phase lag index in the data-driven cortical network model of Alzheimer's disease

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The typical hallmark of electroencephalogram (EEG) in Alzheimer’s disease (AD) is a slowing of rhythms and perturbations in synchrony. However, the mechanism of AD electrophysiological abnormalities is still ambiguous. Synapse deficiency has been considered as an evident neuropathological change in AD that is closely associated with cognitive decline. The main purpose of this work is to explore how synapse deficiency in AD affects these electrophysiological features using neural computational techniques. First, based on the Diffusion Tensor Imaging data, a connectivity matrix of a structural brain network is constructed by means of a pipeline toolbox called PANDA. Using this data-driven connectivity matrix, a cortical network model with 90 cortical areas is then be built in which each cortical area is modeled by a neuron mass model. Subsequently, by reducing the synaptic strength parameter to mimic synapse deficiency in AD, our results show that the synapse deficiency does not only cause a leftward shift of the dominant frequency, but also induces a decrease in the alpha rhythm and an increase in the theta rhythm. Further, the influence of synapse deficiency on phase synchrony is investigated by the phase lag index (PLI). When the synaptic strength parameter is reduced, the alpha-band PLI decreases and theta-band PLI increases. Moreover, a statistical analysis of the differences between the simulated AD and healthy control (HC) in terms of synchronization and rhythms is performed. The results demonstrate that there are significant differences between simulated AD and HC groups. All the above simulation results are consistent with the EEG changes of AD in the physiological experiments. Finally, a strong statistical correlation between PLI and relative power is revealed using Pearson’s correlation analysis. This study reveals a close relationship between synapse deficiency and electrophysiological abnormalities in AD, which may provide new insight for the early diagnosis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Koffie, R.M., Hyman, B.T., Spires-Jones, T.L.: Alzheimer’s disease: synapses gone cold. Mol. Neurodegener. 6(1), 63 (2011). https://doi.org/10.1186/1750-1326-6-63

    Article  Google Scholar 

  2. Lista, S., Hampel, H.: Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev. Neurother. 17(1), 47–57 (2017). https://doi.org/10.1080/14737175.2016.1204234

    Article  Google Scholar 

  3. Davies, C.A., Mann, D.M.A., Sumpter, P.Q., Yates, P.O.: A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J. Neurol. Sci. 78(2), 151–164 (1987). https://doi.org/10.1016/0022-510X(87)90057-8

    Article  Google Scholar 

  4. DeKosky, S.T., Scheff, S.W.: Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann. Neurol. 27(5), 457–464 (1990). https://doi.org/10.1002/ana.410270502

    Article  Google Scholar 

  5. Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., Katzman, R.: Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30(4), 572–580 (1991). https://doi.org/10.1002/ana.410300410

    Article  Google Scholar 

  6. Scheff, S.W., Price, D.A., Schmitt, F.A., Mufson, E.J.: Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 27(10), 1372–1384 (2006). https://doi.org/10.1016/j.neurobiolaging.2005.09.012

    Article  Google Scholar 

  7. Clare, R., King, V.G., Wirenfeldt, M., Vinters, H.V.: Synapse loss in dementias. J. Neurosci. Res. 88(10), 2083–2090 (2010). https://doi.org/10.1002/jnr.22392

    Article  Google Scholar 

  8. Sriram, S., Natiq, H., Rajagopal, K., Parastesh, F., Jafari, S.: Uncovering the correlation between spindle and ripple dynamics and synaptic connections in a hippocampal-thalamic-cortical model. Int. J. Bifurc. Chaos. 33(9), 23501091–235010930 (2023). https://doi.org/10.1142/S0218127423501092

    Article  MathSciNet  Google Scholar 

  9. Foroutannia, A., Nazarimehr, F., Ghasemi, M., Jafari, S.: Chaos in memory function of sleep: a nonlinear dynamical analysis in thalamocortical study. J. Theor. Biol. 528, 110837 (2021). https://doi.org/10.1016/j.jtbi.2021.110837

    Article  MathSciNet  MATH  Google Scholar 

  10. Yan, L.Y., Zhang, H.Z., Sun, Z.K.: Mechanism analysis for excitatory interneurons dominating poly-spike wave and optimization of electrical stimulation. Chaos (2022). https://doi.org/10.1063/5.0076439

    Article  Google Scholar 

  11. Dauwels, J., Vialatte, F., Cichocki, A.: Diagnosis of Alzheimer’s disease from eeg signals: where are we standing? Curr. Alzheimer Res. 7(6), 487–505 (2010). https://doi.org/10.2174/156720510792231720

    Article  Google Scholar 

  12. Jelic, V., Shigeta, M., Julin, P., Almkvist, O., Winblad, B., Wahlund, L.-O.: Quantitative electroencephalography power and coherence in Alzheimer’s disease and mild cognitive impairment. Dement 7(6), 314–323 (1996). https://doi.org/10.1159/000106897

    Article  Google Scholar 

  13. Moretti, D.V., Babiloni, C., Binetti, G., Cassetta, E., Dal Forno, G., Ferreric, F., Rossini, P.M.: Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin. Neurophysiol. 115(2), 299–308 (2004). https://doi.org/10.1016/S1388-2457(03)00345-6

    Article  Google Scholar 

  14. Czigler, B., Csikós, D., Hidasi, Z., Anna Gaál, Z., Csibri, É., Kiss, É., Molnár, M.: Quantitative EEG in early Alzheimer’s disease patients—power spectrum and complexity features. Int. J. Psychophysiol. 68(1), 75–80 (2008). https://doi.org/10.1016/j.ijpsycho.2007.11.002

    Article  Google Scholar 

  15. Gianotti, L.R.R., Künig, G., Lehmann, D., Faber, P.L., Pascual-Marqui, R.D., Kochi, K., Schreiter-Gasser, U.: Correlation between disease severity and brain electric LORETA tomography in Alzheimer’s disease. Clin. Neurophysiol. 118(1), 186–196 (2007). https://doi.org/10.1016/j.clinph.2006.09.007

    Article  Google Scholar 

  16. Tass, P., Rosenblum, M.G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A., Freund, H.-J.: Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys. Rev. Lett. 81(15), 3291–3294 (1998). https://doi.org/10.1103/PhysRevLett.81.3291

    Article  Google Scholar 

  17. Stam, C.J., Nolte, G., Daffertshofer, A.: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28(11), 1178–1193 (2007). https://doi.org/10.1002/hbm.20346

    Article  Google Scholar 

  18. Hardmeier, M., Hatz, F., Bousleiman, H., Schindler, C., Stam, C.J., Fuhr, P.: Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. PLoS ONE 9(10), e108648 (2014). https://doi.org/10.1371/journal.pone.0108648

    Article  Google Scholar 

  19. Zawiślak-Fornagiel, K., Ledwoń, D., Bugdol, M., Romaniszyn-Kania, P., Małecki, A., Gorzkowska, A., Mitas, A.W.: Specific patterns of coherence and phase lag index in particular regions as biomarkers of cognitive impairment in Parkinson’s disease. Parkinsonism. Relat. D. 111, 105436 (2023). https://doi.org/10.1016/j.parkreldis.2023.105436

    Article  Google Scholar 

  20. Polat, H.: Brain functional connectivity based on phase lag index of electroencephalography for automated diagnosis of schizophrenia using residual neural networks. J. Appl. Clin. Med. Phys. (2023). https://doi.org/10.1002/acm2.14039

    Article  Google Scholar 

  21. Kuang, Y., Wu, Z., Xia, R., Li, X., Liu, J., Dai, Y., et al.: Phase lag index of resting-state EEG for identification of mild cognitive impairment patients with type 2 diabetes. Brain Sci. 12(10), 1399 (2022). https://doi.org/10.3390/brainsci12101399

    Article  Google Scholar 

  22. Engels, M.M.A., Stam, C.J., van der Flier, W.M., Scheltens, P., de Waal, H., van Straaten, E.C.W.: Declining functional connectivity and changing hub locations in Alzheimer’s disease: an EEG study. BMC Neurol. 15(1), 145 (2015). https://doi.org/10.1186/s12883-015-0400-7

    Article  Google Scholar 

  23. Kasakawa, S., Yamanishi, T., Takahashi, T., Ueno, K., Kikuchi, M., & Nishimura, H.: Approaches of phase lag index to EEG signals in Alzheimer’s disease from complex network analysis. In: Innovation in Medicine and Healthcare 2015, pp. 459–468. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-23024-5_42

  24. Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73(4), 357–366 (1995). https://doi.org/10.1007/BF00199471

    Article  MATH  Google Scholar 

  25. Wendling, F., Bartolomei, F., Bellanger, J.J., Chauvel, P.: Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci. 15(9), 1499–1508 (2002). https://doi.org/10.1046/j.1460-9568.2002.01985.x

    Article  Google Scholar 

  26. David, O., Harrison, L., Friston, K.J.: Modelling event-related responses in the brain. Neuroimage 25(3), 756–770 (2005). https://doi.org/10.1016/j.neuroimage.2004.12.030

    Article  Google Scholar 

  27. Zavaglia, M., Astolfi, L., Babiloni, F., Ursino, M.: The effect of connectivity on EEG rhythms, power spectral density and coherence among coupled neural populations: analysis with a neural mass model. IEEE Trans. Biomed. Eng. 55(1), 69–77 (2008). https://doi.org/10.1109/TBME.2007.897814

    Article  Google Scholar 

  28. Ursino, M., Cona, F., Zavaglia, M.: The generation of rhythms within a cortical region: analysis of a neural mass model. Neuroimage 52(3), 1080–1094 (2010). https://doi.org/10.1016/j.neuroimage.2009.12.084

    Article  Google Scholar 

  29. Liu, S., Wang, Q., Fan, D.: disinhibition-induced delayed onset of epileptic spike-wave discharges in a five variable model of cortex and thalamus. Front. Comput. Neurosci. (2016). https://doi.org/10.3389/fncom.2016.00028

    Article  Google Scholar 

  30. Fan, D., Liu, S., Wang, Q.: Stimulus-induced epileptic spike-wave discharges in thalamocortical model with disinhibition. Sci. Rep. 6(1), 37703 (2016). https://doi.org/10.1038/srep37703

    Article  Google Scholar 

  31. Hou, S., Fan, D., Wang, Q.: Regulating absence seizures by tri-phase delay stimulation applied to globus pallidus internal. Appl. Math. Mech. 43(9), 1399–1414 (2022). https://doi.org/10.1007/s10483-022-2896-7

    Article  MathSciNet  Google Scholar 

  32. Yan, L., Zhang, H., Sun, Z., Liu, S., Liu, Y., Xiao, P.: Optimization of stimulation waveforms for regulating spike-wave discharges in a thalamocortical model. Chaos Solitons Fractals 158, 112025 (2022). https://doi.org/10.1016/j.chaos.2022.112025

    Article  Google Scholar 

  33. Li, X., Yang, X., Sun, Z.: Alpha rhythm slowing in a modified thalamo-cortico-thalamic model related with Alzheimer’s disease. PLoS ONE 15(3), e0229950 (2020). https://doi.org/10.1371/journal.pone.0229950

    Article  Google Scholar 

  34. Yang, H., Yang, X., Yan, S., Sun, Z.: Effect of acetylcholine deficiency on neural oscillation in a brainstem-thalamus-cortex neurocomputational model related with Alzheimer’s disease. Sci. Rep. 12(1), 14961 (2022). https://doi.org/10.1038/s41598-022-19304-3

    Article  Google Scholar 

  35. Yan, S., Yang, X., Yang, H., Sun, Z.: Decreased coherence in the model of the dorsal visual pathway associated with Alzheimer’s disease. Sci. Rep. 13(1), 3495 (2023). https://doi.org/10.1038/s41598-023-30535-w

    Article  Google Scholar 

  36. Cardenas, V.A., Tosun, D., Yaffe, K.: Co-analysis of structural imaging and DTI in Alzheimer's disease. Proc. Intl. Soc. Mag. Reson. Med. 18 (2010)

  37. Cui, Z., Zhong, S., Xu, P., He, Y., Gong, G.: PANDA: a pipeline toolbox for analyzing brain diffusion images. Front. Hum. Neurosci. (2013). https://doi.org/10.3389/fnhum.2013.00042

    Article  Google Scholar 

  38. Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999). https://doi.org/10.1002/1531-8249(199902)45:2%3c265::AID-ANA21%3e3.0.CO;2-3

    Article  Google Scholar 

  39. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002). https://doi.org/10.1006/nimg.2001.0978

    Article  Google Scholar 

  40. Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., Jiang, T.: Brain anatomical network and intelligence. PLoS Comput. Biol. 5(5), e1000395 (2009). https://doi.org/10.1371/journal.pcbi.1000395

    Article  Google Scholar 

  41. Shu, N., Liu, Y., Li, J., Li, Y., Yu, C., Jiang, T.: Altered anatomical network in early blindness revealed by diffusion tensor tractography. PLoS ONE 4(9), e7228 (2009). https://doi.org/10.1371/journal.pone.0007228

    Article  Google Scholar 

  42. Jansen, B.H., Zouridakis, G., Brandt, M.E.: A neurophysiologically-based mathematical model of flash visual evoked potentials. Biol. Cybern.Cybern. 68(3), 275–283 (1993). https://doi.org/10.1007/BF00224863

    Article  Google Scholar 

  43. Zavaglia, M., Astolfi, L., Babiloni, F., Ursino, M.: A neural mass model for the simulation of cortical activity estimated from high resolution EEG during cognitive or motor tasks. J. Neurosci. MethodsMethods 157(2), 317–329 (2006). https://doi.org/10.1016/j.jneumeth.2006.04.022

    Article  Google Scholar 

  44. Sotero, R.C., Trujillo-Barreto, N.J., Iturria-Medina, Y., Carbonell, F., Jimenez, J.C.: Realistically coupled neural mass models can generate EEG rhythms. Neural Comput. 19(2), 478–512 (2007). https://doi.org/10.1162/neco.2007.19.2.478

    Article  MathSciNet  MATH  Google Scholar 

  45. Penttilä, M., Partanen, J.V., Soininen, H., Riekkinen, P.J.: Quantitative analysis of occipital EEG in different stages of Alzheimer’s disease. EEG Clin. Neurophysiol. 60(1), 1–6 (1985). https://doi.org/10.1016/0013-4694(85)90942-3

    Article  Google Scholar 

  46. Prinz, P.N., Vitiell, M.V.: Dominant occipital (alpha) rhythm frequency in early stage Alzheimer’s disease and depression. EEG Clin. Neurophysiol. 73(5), 427–432 (1989). https://doi.org/10.1016/0013-4694(89)90092-8

    Article  Google Scholar 

  47. Babiloni, C., Arakaki, X., Azami, H., Bennys, K., Blinowska, K., Bonanni, L., et al.: Measures of resting state EEG rhythms for clinical trials in Alzheimer’s disease: Recommendations of an expert panel. Alzheimer’s Dement. 17(9), 1528–1553 (2021). https://doi.org/10.1002/alz.12311

    Article  Google Scholar 

  48. Del Percio, C., Lopez, S., Noce, G., Lizio, R., Tucci, F., Soricelli, A., et al.: What a single electroencephalographic (EEG) channel can tell us about Alzheimer’s disease patients with mild cognitive impairment. Clin. EEG Neurosci. 54(1), 21–35 (2023). https://doi.org/10.1016/j.ijpsycho.2022.10.011

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11972217, 12372062). JK acknowledges support from the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers “Digital biodesign and personalized healthcare” (No. 075-15-2020-926).

Funding

This work is funded by the National Natural Science Foundation of China (Grant Nos. 11972217, 12372062). JK acknowledges support from the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers “Digital biodesign and personalized healthcare” (No. 075-15-2020-926).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by SY and XY. The first draft of the manuscript was written by SY and XY. JK proposed constructive advice and polished the language. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to XiaoLi Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or competing interests.

Ethics approval

Not applicable.

Availability of data and code

The data and code used and analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Yang, X. & Kurths, J. Abnormalities of rhythms and phase lag index in the data-driven cortical network model of Alzheimer's disease. Nonlinear Dyn 111, 21289–21306 (2023). https://doi.org/10.1007/s11071-023-08968-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08968-9

Keywords

Navigation