Skip to main content
Log in

Plasticity mechanism and memory formation in the chemical synapse

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Detailed knowledge about the synaptic plasticity is the key for understanding of memory formation and its changes with aging and diseases. In this paper, we explain the mechanism of synaptic plasticity and link it to the memory formation. A chemical synapse exhibits the same hysteresis curve as a memristor within a presynaptic firing spike, and the memory line is determined by the nonlinear relation between the transmitter concentration and the presynaptic potential. The lower presynaptic voltage threshold of transmitter releasing induces the loss of such memory effect in the synapse. In addition, the link is investigated between the plasticity and memory basing on three aspects, including synaptic plasticity for a given memory (necessity), suppression of synaptic plasticity after acquiring the memory (saturation) and forgotten events (erasure or inaccessible states). Moreover, the small-world brain network and scale-free brain network exhibit desynchronization behaviors with the memory effect, and they show the robustness of some diseases. These results shed light on the understanding of the synaptic plasticity and disclose the principle of memory formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Thiebaut de Schotten, M., Forkel, S.J.: The emergent properties of the connected brain. Science 378, 505–510 (2022)

    Article  Google Scholar 

  2. Humeau, Y., Choquet, D.: The next generation of approaches to investigate the link between synaptic plasticity and learning. Nat. Neurosci. 22, 1536–1543 (2019)

    Article  Google Scholar 

  3. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449 (1952)

    Article  Google Scholar 

  4. Shang, C., He, S., Rajagopal, K., Wang, H., Sun, K.: Dynamics and chimera state in a neural network with discrete memristor coupling. Eur. Phys. J. Spec. Top. 231, 406576 (2022)

    Article  Google Scholar 

  5. Revah, O., Gore, F., Kelley, K.W., Andersen, J., Sakai, N., Chen, X., Li, M.-Y., Birey, F., Yang, X., Saw, N.L.: Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022)

    Article  Google Scholar 

  6. Lee, J.H., Liu, Q., Dadgar-Kiani, E.: Solving brain circuit function and dysfunction with computational modeling and optogenetic fMRI. Science 378, 493–499 (2022)

    Article  Google Scholar 

  7. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  8. Deco, G., Jirsa, V.K., McIntosh, A.R.: Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011)

    Article  Google Scholar 

  9. Holme, P.: Rare and everywhere: Perspectives on scale-free networks. Nat. Commun. 10, 1–3 (2019)

    Article  Google Scholar 

  10. Stampanoni Bassi, M., Iezzi, E., Gilio, L., Centonze, D., Buttari, F.: Synaptic plasticity shapes brain connectivity: implications for network topology. Int. J. Mol. Sci. 20, 6193 (2019)

    Article  Google Scholar 

  11. Scholl, B., Thomas, C.I., Ryan, M.A., Kamasawa, N., Fitzpatrick, D.: Cortical response selectivity derives from strength in numbers of synapses. Nature 590, 111–114 (2021)

    Article  Google Scholar 

  12. El-Boustani, S., Ip, J.P.K., Breton-Provencher, V., Knott, G.W., Okuno, H., Bito, H., Sur, M.: Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science 360, 1349–1354 (2018)

    Article  Google Scholar 

  13. Stellwagen, D., Malenka, R.C.: Synaptic scaling mediated by glial TNF-\(\alpha \). Nature 440, 1054–1059 (2006)

    Article  Google Scholar 

  14. De Vivo, L., Bellesi, M., Marshall, W., Bushong, E.A., Ellisman, M.H., Tononi, G., Cirelli, C.: Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510 (2017)

    Article  Google Scholar 

  15. Xie, Y., Xu, Y., Ma, J.: Desynchronization and energy diversity between neurons. Nonlinear Dyn. pp. 1–21 (2023)

  16. Xu, Y., Ren, G., Ma, J.: Patterns stability in cardiac tissue under spatial electromagnetic radiation. Chaos Solitons Frac. 171, 113522 (2023)

    Article  MathSciNet  Google Scholar 

  17. Zhou, P., Ma, J., Xu, Y.: Phase synchronization between neurons under nonlinear coupling via hybrid synapse. Chaos Solitons Frac. 169, 113238 (2023)

    Article  Google Scholar 

  18. Mostaghimi, S., Nazarimehr, F., Jafari, S., Ma, J.: Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow. Appl. Math. Comput. 348, 42–56 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Yang, F., Ma, J.: Creation of Memristive synapse connection to neurons for keeping energy balance. Pramana 97, 55 (2023)

    Article  Google Scholar 

  20. Zandi-Mehran, N., Jafari, S., Hashemi Golpayegani, S.M.R., Nazarimehr, F., Perc, M.: Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field. Nonlinear Dyn. 100, 1809–1824 (2020)

    Article  Google Scholar 

  21. Costa-Mattioli, M., Sossin, W.S., Klann, E., Sonenberg, N.: Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26 (2009)

    Article  Google Scholar 

  22. Topolnik, L., Tamboli, S.: The role of inhibitory circuits in hippocampal memory processing. Nat. Rev. Neurosci. 8, 476–92 (2022)

    Article  Google Scholar 

  23. Frankland, P.W., Josselyn, S.A., Köhler, S.: The neurobiological foundation of memory retrieval. Nat. Neurosci. 22, 1576–1585 (2019)

    Article  Google Scholar 

  24. Roy, D.S., Arons, A., Mitchell, T.I., Pignatelli, M., Ryan, T.J., Tonegawa, S.: Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531, 508–512 (2016)

    Article  Google Scholar 

  25. Axer, M., Amunts, K.: Scale matters: the nested human connectome. Science 378, 500–504 (2022)

    Article  Google Scholar 

  26. Leergaard, T.B., Bjaalie, J.G.: Atlas-based data integration for mapping the connections and architecture of the brain. Science 378, 488–492 (2022)

    Article  Google Scholar 

  27. Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1, 195–230 (1994)

    Article  Google Scholar 

  28. Lin, H., Wang, C., Deng, Q., Xu, C., Deng, Z., Zhou, C.: Review on chaotic dynamics of Memristive neuron and neural network. Nonlinear Dyn. 106, 959–973 (2021)

    Article  Google Scholar 

  29. Kaya, T.: Memristor and Trivium-based true random number generator. Physica A 542, 124071 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Richards, B.A., Lillicrap, T.P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., Clopath, C., Costa, R.P., de Berker, A., Ganguli, S.: A deep learning framework for neuroscience. Nat. Neurosci. 22, 1761–1770 (2019)

    Article  Google Scholar 

  31. Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks. Int. J. Neural Syst. 19, 295–308 (2009)

    Article  Google Scholar 

  32. Subbulakshmi Radhakrishnan, S., Sebastian, A., Oberoi, A., Das, S., Das, S.: A biomimetic neural encoder for spiking neural network. Nat. Commun. 12, 1–10 (2021)

    Article  Google Scholar 

  33. Myers, A.D., Chumley, M.M., Khasawneh, F.A., Munch, E.: Persistent homology of coarse-grained state-space networks. Phys. Rev. E 107, 034303 (2023)

    Article  MathSciNet  Google Scholar 

  34. Gennari, G., Marti, S., Palu, M., Fló, A., Dehaene-Lambertz, G.: Orthogonal neural codes for speech in the infant brain. Proc. Natl. Acad. Sci. 118, e2020410118 (2021)

    Article  Google Scholar 

  35. Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., Pritzel, A., Chadwick, M.J., Degris, T., Modayil, J.: Vector-based navigation using grid-like representations in artificial agents. Nature 557, 429–433 (2018)

    Article  Google Scholar 

  36. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A.: Mastering the game of go without human knowledge. Nature 550, 354–359 (2017)

    Article  Google Scholar 

  37. Lanza, M., Sebastian, A., Lu, W.D., Le Gallo, M., Chang, M.-F., Akinwande, D., Puglisi, F.M., Alshareef, H.N., Liu, M., Roldan, J.B.: Memristive technologies for data storage, computation, encryption, and radio-frequency communication (1979). Science 376(6597), eabj9979 (2022)

    Article  Google Scholar 

  38. Gao, B., Zhou, Y., Zhang, Q., Zhang, S., Yao, P., Xi, Y., Liu, Q., Zhao, M., Zhang, W., Liu, Z.: Memristor-based analogue computing for brain-inspired sound localization with in situ training. Nat. Commun. 13, 1–8 (2022)

    Google Scholar 

  39. Sun, L., Wang, Z., Jiang, J., Kim, Y., Joo, B., Zheng, S., Lee, S., Yu, W.J., Kong, B.-S., Yang, H.: In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021)

    Article  Google Scholar 

  40. Wang, T., Wang, M., Wang, J., Yang, L., Ren, X., Song, G., Chen, S., Yuan, Y., Liu, R., Pan, L.: A chemically mediated artificial neuron. Nat Electron. 5, 586–595 (2022)

  41. Wang, Y., Gong, Y., Huang, S., Xing, X., Lv, Z., Wang, J., Yang, J.-Q., Zhang, G., Zhou, Y., Han, S.-T.: Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 12, 1–12 (2021)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62071496, 61901530) and the Research and Innovation Project of Graduate of Central South University (2023ZZTS0168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehui Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Sun, K. & He, S. Plasticity mechanism and memory formation in the chemical synapse. Nonlinear Dyn 111, 19411–19423 (2023). https://doi.org/10.1007/s11071-023-08844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08844-6

Keywords

Navigation