Skip to main content
Log in

Barrier function-based adaptive antisway control for underactuated overhead cranes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear controls that account for constraints on the state variable of overhead cranes can hardly strengthen the effective coupling between trolley movement and load oscillation, thus possessing little capacity in oscillation suppression. Nevertheless, such control designs trend to be more complex under parametric uncertainties. To solve these problems, this paper employs novel barrier functions in the coupling control design, so that the obtained feedback can preserve all states, including the composite variable, bounded within asymmetric limits while simultaneously enhancing antisway effectiveness. Owing to the simple structure of the Lyapunov derivative, the adaptation facilitates the proposed controller with robustness to parametric uncertainties. LaSalle’s invariance principle ensures the asymptotic stability, and experiments verify the validity of the suggested controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Maghsoudi, M.J., Ramli, L., Sudin, S., Mohamed, Z., Husain, A.R., Wahid, H.: Improved unity magnitude input shaping scheme for sway control of an underactuated 3d overhead crane with hoisting. Mech. Syst. Signal Process. 123, 466–482 (2019)

    Article  Google Scholar 

  2. Sorensen, K.L., Singhose, W.E.: Command-induced vibration analysis using input shaping principles. Automatica 44(9), 2392–2397 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mori, Y., Tagawa, Y.: Vibration controller for overhead cranes considering limited horizontal acceleration. Autom. Constr. 81, 256–263 (2018)

    Google Scholar 

  4. Sun, N., Wu, Y., Chen, H., Fang, Y.: An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments. Mech. Syst. Signal Process. 102, 87–101 (2018)

    Article  Google Scholar 

  5. Lu, B., Cao, H., Hao, Y., Lin, J., Fang, Y.: Online antiswing trajectory planning for a practical rubber tire container gantry crane. IEEE Trans. Industr. Electron. 69(6), 6193–6203 (2022)

    Article  Google Scholar 

  6. Wang, D., He, H., Liu, D.: Intelligent optimal control with critic learning for a nonlinear overhead crane system. IEEE Trans. Industr. Inf. 14(7), 2932–2940 (2018)

    Article  Google Scholar 

  7. Kolar, B., Rams, H., Schlacher, K.: Time-optimal flatness based control of a gantry crane. Control. Eng. Pract. 60, 18–27 (2017)

    Article  Google Scholar 

  8. Bouarar, T., Guelton, K., Manamanni, N.: Robust non-quadratic static output feedback controller design for takagi-sugeno systems using descriptor redundancy. Eng. Appl. Artif. Intell. 26(2), 739–756 (2013)

    Article  MATH  Google Scholar 

  9. Zhang, S., Zhu, H., He, X., Feng, Y., Pang, C.K.: Passivity-based coupling control for underactuated three-dimensional overhead cranes. ISA Trans. (2021). https://doi.org/10.1016/j.isatra.2021.07.040

    Article  Google Scholar 

  10. Yang, Y., Ye, X., Wen, B., Huang, J., Su, X.: Adaptive control design for uncertain underactuated cranes with nonsmooth input nonlinearities. In: IEEE Transactions on Systems, Man, and Cybernetics. https://doi.org/10.1109/TSMC.2022.3192754

  11. Sun, N., Fang, Y., Chen, H.: Adaptive antiswing control for cranes in the presence of rail length constraints and uncertainties. Nonlinear Dyn. 81(1–2), 41–51 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sun, N., Fang, Y.: Partially saturated nonlinear control for gantry cranes with hardware experiments. Nonlinear Dyn. 77(3), 655–666 (2014)

    Article  MATH  Google Scholar 

  13. Sun, N., Fang, Y., Wu, X.: An enhanced coupling nonlinear control method for bridge cranes. IET Control Theory Appl. 8(13), 1215–1223 (2014)

    Article  Google Scholar 

  14. Fang, Y., Dixon, W.E., Dawson, D.M., Zergeroglu, E.: Nonlinear coupling control laws for an underactuated overhead crane system. IEEE/ASME Trans. Mechatron. 8(3), 418–423 (2003)

    Article  Google Scholar 

  15. Zhang, S.Z., He, X.X., Chen, Q.: Energy coupled-dissipation control for 3-dimensional overhead cranes. Nonlinear Dyn. 99(3), 2097–2107 (2020)

    Article  MATH  Google Scholar 

  16. Zhang, M., Jing, X., Huang, W., Li, P.: Saturated PD-SMC method for suspension systems by exploiting beneficial nonlinearities for improved vibration reduction and energy-saving performance. Mech. Syst. Signal Process. 179, 563 (2022)

    Article  Google Scholar 

  17. Wen, Y., Lou, X., Wu, W., Cui, B.: Backstepping boundary control for a class of gantry crane systems. IEEE Trans. Cybern. 5, 21 (2012). https://doi.org/10.1109/TCYB.2022.3188494

    Article  Google Scholar 

  18. Almutairi, N.B., Zribi, M.: Sliding mode control of a three-dimensional overhead crane. J. Vib. Control 15(11), 1679–1730 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, L., Ouyang, H.: Precision-positioning adaptive controller for swing elimination in three-dimensional overhead cranes with distributed mass beams. In: ISA Transactions (2021)

  20. Zhang, S., He, X., Zhu, H., Li, X., Liu, X.: PID-like coupling control of underactuated overhead cranes with input constraints. Mech. Syst. Signal Process. 178, 109274 (2022)

    Article  Google Scholar 

  21. Sun, N., Fang, Y.: Nonlinear tracking control of underactuated cranes with load transferring and lowering: theory and experimentation. Automatica 50(9), 2350–2357 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, M., Chen, H., Zhang, R.: An input dead zones considered adaptive fuzzy control approach for double pendulum cranes with variable rope lengths. IEEE/ASME Trans. Mechatron. 5, 1–12 (2022). https://doi.org/10.1109/TMECH.2021.3137818

    Article  Google Scholar 

  23. Zhai, M., Yang, T., Sun, N., Fang, Y.: Observer-based adaptive fuzzy control of underactuated offshore cranes for cargo stabilization with respect to ship decks. Mech. Mach. Theory 175, 2589 (2022)

    Article  Google Scholar 

  24. Qian, D., Tong, S., Lee, S.: Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes. Autom. Constr. 65, 133–143 (2016)

    Article  Google Scholar 

  25. Rincon, L., Kubota, Y., Venture, G., Tagawa, Y.: Inverse dynamic control via “simulation of feedback control’’ by artificial neural networks for a crane system. Control. Eng. Pract. 94, 104203 (2020)

    Article  Google Scholar 

  26. El-Nabulsi, A.R.: Non-linear dynamics with non-standard lagrangians. Qual. Theory Dyn. Syst. 12(2), 273–291 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ryalat, M., Laila, D.S.: A simplified IDA-PBC design for underactuated mechanical systems with applications. Eur. J. Control. 27, 1–16 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Romero, J.G., Donaire, A., Ortega, R., Borja, P.: Global stabilisation of underactuated mechanical systems via PID passivity-based control. Automatica 96, 178–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Spong, M.W., Corke, P., Lozano, R.: Nonlinear control of the reaction wheel pendulum. Automatica 37(11), 1845–1851 (2001)

    Article  MATH  Google Scholar 

  31. Jiang, Z.: Global tracking control of underactuated ships by lyapunov’s direct method. Automatica 38(2), 301–309 (2002)

    Article  MATH  Google Scholar 

  32. Sun, N., Wu, Y., Fang, Y., Chen, H., Lu, B.: Nonlinear continuous global stabilization control for underactuated RTAC systems: Design, analysis, and experimentation. IEEE/ASME Trans. Mechatron. 22(2), 1104–1115 (2017)

    Article  Google Scholar 

  33. Ovalle, L., Rios, H., Llama, M., Fridman, L.: Continuous sliding-mode output-feedback control for stabilization of a class of underactuated systems. IEEE Trans. Autom. Control 67(2), 986–992 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen, H., Sun, N.: Nonlinear control of underactuated systems subject to both actuated and unactuated state constraints with experimental verification. IEEE Trans. Industr. Electron. 67(9), 7702–7714 (2020)

    Article  MathSciNet  Google Scholar 

  35. Yang, T., Sun, N., Fang, Y.: Neuroadaptive control for complicated underactuated systems with simultaneous output and velocity constraints exerted on both actuated and unactuated states. In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11 (2021). https://doi.org/10.1109/TNNLS.2021.3115960

  36. Yang, T., Chen, H., Sun, N., Fang, Y.: Adaptive neural network output feedback control of uncertain underactuated systems with actuated and unactuated state constraints. IEEE Trans. Syst. Man Cybern. Syst. 52(11), 7027–7043 (2022)

    Article  Google Scholar 

  37. Yang, T., Sun, N., Chen, H., Fang, Y.: Adaptive optimal motion control of uncertain underactuated mechatronic systems with actuator constraints. IEEE/ASME Trans. Mechatron. 28(1), 210–222 (2023)

    Article  Google Scholar 

  38. Lai, X., Pan, C., Wu, M., Yang, S.X.: Unified control of n-link underactuated manipulator with single passive joint: a reduced order approach. Mech. Mach. Theory 56, 170–185 (2012)

    Article  Google Scholar 

  39. Gritli, H., Belghith, S.: LMI-based synthesis of a robust saturated controller for an underactuated mechanical system subject to motion constraints. Eur. J. Control. 57, 179–193 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, M., Zhang, Y., Ji, B., Ma, C., Cheng, X.: Adaptive sway reduction for tower crane systems with varying cable lengths. Autom. Constr. 119, 103342 (2020)

    Article  Google Scholar 

  41. Ouyang, H., Tian, Z., Yu, L., Zhang, G.: Adaptive tracking controller design for double-pendulum tower cranes. Mech. Mach. Theory 153, 52 (2020)

    Article  Google Scholar 

  42. Pathak, K., Franch, J., Agrawal, S.K.: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Rob. 21(3), 505–513 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This study has been funded by the National Natural Science Foundation of China (Project Nos. 61873239, 62233016). The authors have no relevant financial or non-financial interests to disclose. All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Zhang Shengzeng, He Xiongxiong and Zhu Haiyue. The first draft of the manuscript was written by Zhang Shengzeng and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongxiong He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., He, X. & Zhu, H. Barrier function-based adaptive antisway control for underactuated overhead cranes. Nonlinear Dyn 111, 18077–18093 (2023). https://doi.org/10.1007/s11071-023-08803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08803-1

Keywords

Navigation