Skip to main content
Log in

Investigation of a weathervaning FPSO based on a fully nonlinear boundary element method

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This research modifies the existing fully nonlinear potential-flow model to investigate the motion and load responses of a weathervaning floating production storage and offloading (FPSO) vessel subjected to wind, waves, and currents. This study employs the mixed Eulerian-Lagrangian approach to track the instantaneous fully nonlinear free surface and the auxiliary function method to solve the time derivative of the velocity potential. This model develops the free-surface rotation technique and locally updated strategy to simulate the intense interaction between the structure and oblique waves. In the meantime, the slender rod model is applied to account for the coupled effect between the floating body and attached mooring lines, and the wind and current loads are computed by interpolating the coefficient matrix. The results of predictions under different sea conditions are compared with those of the industry standard software ANSYS AQWA and the measurements in a model test, and they are found to be in good agreement. Using this code, the weather-vaning behavior and resonance in the surge and sway motion of a turret-moored FPSO are successfully modeled. The proposed approach also accurately catches the nonlinear wave-structure interaction, such as wave run-up, bow slamming, and asymmetric sectional loads. The water pressure frequency spectra demonstrate that this technique can apply more accurate environmental loads to structure analysis and has the potential to enhance the durability of offshore structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The primary raw data are available from the corresponding author upon reasonable request.

References

  1. Vinnem, J.E.: Offshore risk assessment, vol. 1. Springer, Heidelberg (2014)

    Book  Google Scholar 

  2. Lyu, B.C., Wu, W.H.: Dynamic characteristics analysis of an in-service SYMS based on long-term field monitoring. Ocean Eng. (2022). https://doi.org/10.1016/j.oceaneng.2022.112648

    Article  Google Scholar 

  3. Östman, A., Pakozdi, C., Sileo, L., Stansberg, C.T., de Carvalho e Silva, D.F.: A fully nonlinear RANS-VOF numerical wave tank applied in the analysis of green water on FPSO in waves. In: OMAE (2014)

  4. Guan, M., Ali, M.O.A., Ng, C.Y.: Effect of water depths on the hydrodynamic responses of an FPSO platform. In: MATEC Web Conference (2018)

  5. Erkurtulmus, S.A., Pesman, E., Copuroglu, H.: A comparison of loading conditions effects on the vertical motions of turret-moored FPSO. TRANSNAV (2017). https://doi.org/10.1201/9781315099088-41

    Article  Google Scholar 

  6. Zhang, L., Lu, H.N., Yang, J.M., Peng, T., Xiao, L.F.: Low-frequency drift forces and horizontal motions of a moored FPSO in bi-directional swell and wind-sea offshore West Africa. Ships Offshore Struct. (2013). https://doi.org/10.1080/17445302.2012.700564

    Article  Google Scholar 

  7. Tahar, A., Kim, M.H.: Coupled-dynamic analysis of floating structures with polyester mooring lines. Ocean Eng. (2008). https://doi.org/10.1016/j.oceaneng.2008.09.004

    Article  Google Scholar 

  8. Liang, H., Chua, K.H., Wang, H.C., Choo, Y.S.: Numerical and experimental investigations into fluid resonance in a gap between two side-by-side vessels. Appl. Ocean Res. (2021). https://doi.org/10.1016/j.apor.2021.102581

    Article  Google Scholar 

  9. Huang, W., Li, B.B., Chen, X.B., Araujo, R.: Numerical and experimental studies on dynamic gangway response between monohull flotel and FPSO in non-parallel side-by-side configuration. Ocean Eng. (2018). https://doi.org/10.1016/j.oceaneng.2017.12.027

    Article  Google Scholar 

  10. Sanchez-Mondragon, J., Vázquez-Hernández, A.O., Cho, S.K., Sung, H.G.: Yaw motion analysis of an FPSO turret mooring system under wave drift forces. Appl. Ocean Res. (2018). https://doi.org/10.1016/j.apor.2018.02.013

    Article  Google Scholar 

  11. Yadav, A., Varghese, S., Thiagarajan, K.P.: Parametric study of yaw instability of a weathervaning platform. AFMC (2007)

  12. Xu, K., Shao, Y.L., Gao, Z., Moan, T.: A study on fully nonlinear wave load effects on floating wind turbine. J. Fluids Struct. (2019). https://doi.org/10.1016/j.jfluidstructs.2019.05.008

    Article  Google Scholar 

  13. Liu, Y.M., Xue, M., Yue, D.K.P.: Computations of fully nonlinear three-dimensional wave–wave and wave–body interactions. Part 2. Nonlinear waves and forces on a body. J. Fluid Mech. (2001). https://doi.org/10.1017/S0022112001004384

    Article  MATH  Google Scholar 

  14. Xu, Y., Bingham, H.B., Shao, Y.L.: A high-order finite difference method with immersed-boundary treatment for fully-nonlinear wave–structure interaction. Appl. Ocean Res. (2023). https://doi.org/10.1016/j.apor.2023.103535

    Article  Google Scholar 

  15. Hicks, J.B.H.: Development of a high-order potential flow solver for nonlinear wave-structure interaction. Technical University of Denmark. DCAMM Special Report No. S284 (2020)

  16. Glimberg, S.L., Engsig-Karup, A.P., Olson, L.N.: A massively scalable distributed multigrid framework for nonlinear marine hydrodynamics. Int. J. High Perform. Comput. Appl. (2019). https://doi.org/10.1177/1094342019826662

    Article  Google Scholar 

  17. Amini-Afshar, M., Bingham, H.B., Henshaw, W.D., Read, R.: A nonlinear potential-flow model for wave-structure interaction using high-order finite differences on overlapping grids. In: IWWWFB (2019)

  18. Kontos S: Robust numerical methods for nonlinear wave-structure interaction in a moving frame of reference. Technical University of Denmark. DCAMM Special Report No. S217 (2015)

  19. Hu, Z.Z., Yan, S.Q., Greaves, D., Mai, T., Raby, A., Ma, Q.W.: Investigation of interaction between extreme waves and a moored FPSO using FNPT and CFD solvers. Ocean Eng. (2020). https://doi.org/10.1016/j.oceaneng.2020.107353

    Article  Google Scholar 

  20. Ma, Q.W., Yan, S.: QALE-FEM for numerical modelling of non-linear interaction between 3D moored floating bodies and steep waves. Int. J. Numer. Methods Eng. (2009). https://doi.org/10.1002/nme.2505

    Article  MATH  Google Scholar 

  21. Wu, G.X., Hu, Z.Z.: Simulation of nonlinear interactions between waves and floating bodies through a finite-element-based numerical tank. Proc. R. Soc. Lond. A (2004). https://doi.org/10.1098/rspa.2004.1302

    Article  MATH  Google Scholar 

  22. Kim, S.J., Kim, M.: The nonlinear wave and current effects on fixed and floating bodies by a three-dimensional fully-nonlinear numerical wave tank. Ocean Eng. (2022). https://doi.org/10.1016/j.oceaneng.2021.110458

    Article  Google Scholar 

  23. Kim, S.J., Kim, M.H., Koo, W.: Higher-order diffraction forces on vertical circular cylinders by using a three-dimensional fully-nonlinear potential numerical wave tank. Ocean Eng. (2021). https://doi.org/10.1016/j.oceaneng.2021.109065

    Article  Google Scholar 

  24. Kim, S.J., Kim, M.H., Koo, W.: Nonlinear hydrodynamics of freely floating symmetric bodies in waves by three-dimensional fully nonlinear potential-flow numerical wave tank. Appl. Ocean Res. (2021). https://doi.org/10.1016/j.apor.2021.102727

    Article  Google Scholar 

  25. Cheng, Y., Li, G., Ji, C.Y., Zhai, G.J.: Fully nonlinear investigation of focused wave slamming on a freely rotating flap. Eng. Anal. Bound. Elem. (2020). https://doi.org/10.1016/j.enganabound.2019.10.005

    Article  MathSciNet  MATH  Google Scholar 

  26. Dombre, E., Harris, J.C., Benoit, M., Violeau, D., Peyrard, C.: A 3D parallel boundary element method on unstructured triangular grids for fully nonlinear wave-body interactions. Ocean Eng. (2019). https://doi.org/10.1016/j.oceaneng.2018.09.044

    Article  Google Scholar 

  27. Zhou, B.Z., Ning, D.Z., Teng, B., Bai, W.: Numerical investigation of wave radiation by a vertical cylinder using a fully nonlinear HOBEM. Ocean Eng. (2013). https://doi.org/10.1016/j.oceaneng.2013.04.019

    Article  Google Scholar 

  28. Bai, W., Taylor, R.E.: Fully nonlinear simulation of wave interaction with fixed and floating flared structures. Ocean Eng. (2009). https://doi.org/10.1016/j.oceaneng.2008.11.003

    Article  Google Scholar 

  29. Bai, W., Eatock Taylor, R.: Higher-order boundary element simulation of fully nonlinear wave radiation by oscillating vertical cylinders. Appl. Ocean Res. (2006). https://doi.org/10.1016/j.apor.2006.12.001

    Article  Google Scholar 

  30. Ma, S., Hanssen, F.C.W., Siddiqui, M.A., Greco, M., Faltinsen, O.M.: Local and global properties of the harmonic polynomial cell method: In-depth analysis in two dimensions. Int. J. Numer. Methods Eng. (2018). https://doi.org/10.1002/nme.5631

    Article  MathSciNet  Google Scholar 

  31. Shao, Y.L., Faltinsen, O.M.: A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics. J. Comput. Phys. (2014). https://doi.org/10.1016/j.jcp.2014.06.021

    Article  MathSciNet  MATH  Google Scholar 

  32. Engsig-Karup, A.P., Monteserin, C., Eskilsson, C.: A mixed Eulerian-Lagrangian spectral element method for nonlinear wave interaction with fixed structures. Water Waves (2019). https://doi.org/10.1007/s42286-019-00018-5

    Article  MathSciNet  MATH  Google Scholar 

  33. Monteserin, C., Engsig-Karup, A.P., Eskilsson, C.: Nonlinear wave-body interaction using a mixed-Eulerian-Lagrangian spectral element model. OMAE (2018). https://doi.org/10.1115/omae2018-77692

    Article  MATH  Google Scholar 

  34. Lin, Z.B., Qian, L., Bai, W., Ma, Z.H., Chen, H., Zhou, J.G., Gu, H.B.: A finite volume based fully nonlinear potential flow model for water wave problems. Appl. Ocean Res. (2021). https://doi.org/10.1016/j.apor.2020.102445

    Article  Google Scholar 

  35. Bingham, H.B., Zhang, H.W.: On the accuracy of finite-difference solutions for nonlinear water waves. J. Eng. Math (2007). https://doi.org/10.1007/s10665-006-9108-4

    Article  MathSciNet  MATH  Google Scholar 

  36. Vinje, T., Brevig, P.: Numerical simulation of breaking waves. Adv. Water Resour. (1981). https://doi.org/10.1016/0309-1708(81)90027-0

    Article  Google Scholar 

  37. Cao, Y., Beck, R.F., Schultz, W.W.: Nonlinear computation of wave loads and motions of floating bodies in incident waves. In: IWWWFB (1994)

  38. Tanizawa, K.: A nonlinear simulation method of 3-D body motions in waves. J. Soc. Nav. Archit. Jpn. (1995). https://doi.org/10.2534/jjasnaoe1968.1995.178_179

    Article  Google Scholar 

  39. Wu, G.X., Taylor, R.E.: Transient motion of a floating body in steep waves. In: IWWWFB (1996)

  40. Letournel, L., Ducrozet, G., Babarit, A., Ferrant, P.: Proof of the equivalence of Tanizawa–Berkvens’ and Cointe–van Daalen’s formulations for the time derivative of the velocity potential for non-linear potential flow solvers. Appl. Ocean Res. (2017). https://doi.org/10.1016/j.apor.2017.01.010

    Article  Google Scholar 

  41. Mujeeb-Ahmed, M.P., Cabrera, J., Kim, H.J., Paik, J.K.: Effect of mooring line layout on the loads of ship-shaped offshore installations. Ocean Eng. (2021). https://doi.org/10.1016/j.oceaneng.2021.110071

    Article  Google Scholar 

  42. Tang, Y., Sun, S.L., Ren, H.L.: Numerical investigation on a container ship navigating in irregular waves by a fully nonlinear time domain method. Ocean Eng. (2021). https://doi.org/10.1016/j.oceaneng.2021.108705

    Article  Google Scholar 

  43. Wang, C., Khoo, B.C., Yeo, K.S.: Elastic mesh technique for 3D BIM simulation with an application to underwater explosion bubble dynamics. Comput. Fluids (2003). https://doi.org/10.1016/S0045-7930(02)00105-6

    Article  MATH  Google Scholar 

  44. Sun, S.L., Wang, J.L., Li, H., Chen, R.Q., Zhang, C.J.: Investigation on responses and wave climbing of a ship in large waves using a fully nonlinear boundary element method. Eng. Anal. Bound. Elem. (2021). https://doi.org/10.1016/j.enganabound.2021.02.002

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, J., Sun, S.L., Hu, J.: The coupling analysis of tank motion and sloshing by a fully nonlinear decoupling method. Nonlinear Dyn. (2017). https://doi.org/10.1007/s11071-017-3495-0

    Article  Google Scholar 

  46. Wu, G.X.: Hydrodynamic force on a rigid body during impact with liquid. J. Fluids Struct. (1998). https://doi.org/10.1006/jfls.1998.0158

    Article  Google Scholar 

  47. Benham, F.A.: Prediction of wind and current loads on VLCCs. OCIMF, London (1977)

    Google Scholar 

  48. Jing, X.N., Webster, W.C., Xu, Q., Lambrakos, K.: Coupled dynamic modeling of a moored floating platform with risers. OMAE (2011). https://doi.org/10.1115/OMAE2011-49553

    Article  Google Scholar 

  49. Ma, S., Duan, W.Y., Han, X.L.: Dynamic asynchronous coupled analysis and experimental study for a turret moored FPSO in random seas. J. Offshore Mech. Arct. Eng. (2015). https://doi.org/10.1115/1.4030681

    Article  Google Scholar 

  50. Serraris, J.W., Beks, D.: Model tests for Liuhua FPSO. MARIN, Netherlands (2018)

    Google Scholar 

  51. Jiao, J.L., Huang, S.X., Tezdogan, T., Terziev, M., Soares, C.G.: Slamming and green water loads on a ship sailing in regular waves predicted by a coupled CFD–FEA approach. Ocean Eng. (2021). https://doi.org/10.1016/j.oceaneng.2021.110107

    Article  Google Scholar 

  52. Ren, Z., Wang, J.H., Wan, D.C.: Investigation of the flow field of a ship in planar motion mechanism tests by the vortex identification method. J. Mar. Sci. Eng. (2020). https://doi.org/10.3390/jmse8090649

    Article  Google Scholar 

Download references

Funding

This work is supported by High-Tech Ship Project of Ministry of Industry and Information Technology (CBZ3N21-2) and National Key R&D Program of China (2022YFB3306200).

Author information

Authors and Affiliations

Authors

Contributions

SLS contributed significantly to the algorithm establishment; JT performed the data analysis and wrote the manuscript; XQZ contributed to the conception of the study; HL helped in performing the analysis with constructive discussions.

Corresponding author

Correspondence to Xue-Qian Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Abbreviations and nomenclatures

See Tables

Table 7 The list of abbreviations

7 and

Table 8 The list of main nomenclatures

8.

Appendix B: The control parameter in numerical simulation

See Tables

Table 9 The control parameter of the numerical model

9 and

Table 10 The wind/current coefficient matrix

10.

Appendix C: The time histories of numerical results under model test conditions

See Figs.

Fig. 14
figure 14

The time histories of HOR_OFFSET numerical results

14,

Fig. 15
figure 15

The time histories of Z_TC numerical results

15,

Fig. 16
figure 16

The time histories of Pitch numerical results

16,

Fig. 17
figure 17

The time histories of F_MLINE_02 numerical results

17,

Fig. 18
figure 18

The time histories of F_MLINE_05 numerical results

18 and

Fig. 19
figure 19

The time histories of F_MLINE_08 numerical results

19.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, SL., Tian, J., Zhou, XQ. et al. Investigation of a weathervaning FPSO based on a fully nonlinear boundary element method. Nonlinear Dyn 111, 21815–21836 (2023). https://doi.org/10.1007/s11071-023-08694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08694-2

Keywords

Navigation