Skip to main content
Log in

Instability dynamics of Peregrine soliton revisited with a modal expansion technique

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we aim at taking a step towards exploring the unstable dynamics of Peregrine soliton as a prototype of rogue waves. Given its spatio-temporal doubly localized structure, the generic Fourier-spectral scheme fails to realize the dimensionality reduction of its nonlinear dynamics. We introduce a modal expansion technique in which physical properties of wave structure are mapped onto proper orthogonal modal basis with space-independent. As a result, the evolution of Peregrine soliton is reduced to an equivalent particle motion in 3-dimension phase space. The govern equation obtained can not only capture correctly underlying behaviors as well as transient natures, but also reveal nicely a complex and subtle structure of the unstable process within the phase-space representation. High consistency with the reconstructed field and the theoretical solution validate the reliability and feasibility of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data that support the finding of this study are included within this article.

References

  1. Kibler, B., Fatome Finot, J.C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790 (2010)

    Article  Google Scholar 

  2. Xu, G., Hammani, K., Chabchoub, A., Dudley, J.M., Kibler, B., Finot, C.: Phase evolution of Peregrine-like breathers in optics and hydrodynamics. Phys. Rev. E 99, 012207 (2019)

    Article  Google Scholar 

  3. Hammani, K., Kibler, B., Finot, C., Morin, P., Fatome, J., Dudley, J.M., Millot, G.: Peregrine soliton generation and breakup in standard telecommunications fiber. Opt. Lett. 36, 112 (2011)

    Article  Google Scholar 

  4. Audo, F., Kibler, B., Fatome, J., Finot, C.: Experimental observation of the emergence of Peregrine-like events in focusing dam break flows. Opt. Lett. 43, 2864 (2018)

    Article  Google Scholar 

  5. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  Google Scholar 

  6. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755 (2014)

    Article  Google Scholar 

  7. Karjanto, N.: Peregrine soliton as a limiting behavior of the Kuznetsov–Ma and Akhmediev breathers. Front. Phys. 9, 599767 (2021)

    Article  Google Scholar 

  8. Deng, Z., Zhang, J., Fan, D., Zhang, L.: Manipulation of breather waves with split-dispersion cascaded fibers. New J. Phys. 24, 063018 (2022)

    Article  MathSciNet  Google Scholar 

  9. Cuevas-Maraver, J., Kevrekidis, P.G., Frantzeskakis, D.J., Karachalios, N.I., Haragus, M., James, G.: Floquet analysis of Kuznetsov–Ma breathers: a path towards spectral stability of rogue waves. Phys. Rev. E 96, 012202 (2017)

    Article  MathSciNet  Google Scholar 

  10. Baronio, F., Chen, S., Trillo, S.: Resonant radiation from Peregrine solitons. Opt. Lett. 45, 427 (2020)

    Article  Google Scholar 

  11. Yang, G., Wang, Y., Qin, Z., Malomed, B.A., Mihalache, D., Li, L.: Breather-like solitons extracted from the Peregrine rogue wave. Phys. Rev. E 90, 062909 (2014)

    Article  Google Scholar 

  12. Tikan, A.: Effect of local Peregrine soliton emergence on statistics of random waves in the one-dimensional focusing nonlinear Schrödinger equation. Phys. Rev. E 101, 012209 (2020)

    Article  Google Scholar 

  13. Ablowitz, M.J., Cole, J.T.: Transverse instability of rogue waves. Phys. Rev. Lett. 127, 104101 (2021)

    Article  MathSciNet  Google Scholar 

  14. Dudley, J.M., Genty, G., Mussot, A., Chabchoub, A., Dias, F.: Rogue waves and analogies in optics and oceanography. Nature Rev. Phys. 1, 675 (2019)

    Article  Google Scholar 

  15. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B Appl. Math. 25, 16 (1983)

    Article  MATH  Google Scholar 

  16. Li, J.T., Han, J.Z., Du, Y.D., Dai, C.Q.: Controllable behaviors of Peregrine soliton with two peaks in a birefringent fiber with higher-order effects. Nonlinear Dyn. 82, 1393–1398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dai, C.Q., Liu, J., Fan, Y., Yu, D.G.: Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality. Nonlinear Dyn. 88, 1373–1383 (2017)

    Article  Google Scholar 

  18. Chen, Y.X., Xu, F.Q., Hu, Y.L.: Excitation control for three-dimensional Peregrine solution and combined breather of a partially nonlocal variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95, 1957–1964 (2019)

    Article  MATH  Google Scholar 

  19. Belić, M.R., Nikolić, S.N., Ashour, O.A., Aleksić, N.B.: On different aspects of the optical rogue waves nature. Nonlinear Dyn. 108, 1655–1670 (2022)

    Article  Google Scholar 

  20. Zakharov, V.E., Gelash, A.A.: Nonlinear stage of modulation instability. Phys. Rev. Lett. 111, 054101 (2013)

    Article  Google Scholar 

  21. Trillo, S., Wabnitz, S.: Dynamics of the nonlinear modulational instability in optical fibers. Opt. Lett. 16, 986 (1991)

    Article  Google Scholar 

  22. Mussot, A., Naveau, C., Conforti, M., Kudlinski, A., Copie, F., Szriftgiser, P., Trillo, S.: Fibre multi-wave mixing combs reveal the broken symmetry of Fermi–Pasta–Ulam recurrence. Nat. Photon. 12, 303 (2018)

    Article  Google Scholar 

  23. Gorder, R.A.V.: Orbital instability of the Peregrine soliton. J. Phys. Soc. Jpn. 83, 054005 (2014)

    Article  Google Scholar 

  24. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press (2012)

  25. Ding, E., Shlizerman, E., Kutz, J.N.: Modeling multipulsing transition in ring cavity lasers with proper orthogonal decomposition. Phys. Rev. A 82, 023823 (2010)

    Article  Google Scholar 

  26. Sargsyan, S., Brunton, S.L., Kutz, J.N.: Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries. Phys. Rev. E 92, 033304 (2015)

    Article  Google Scholar 

  27. Wang, Y., Ding, X., Hu, K., Fang, F., Navon, I.M., Lin, G.: Feasibility of DEIM for retrieving the initial field via dimensionality reduction. J. Comput. Phys. 429, 110005 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Suman, S.K., Kumar, A.: Investigation and implementation of model order reduction technique for large scale dynamical systems. Arch. Comput. Methods Eng. 29, 3087 (2022)

    Article  MathSciNet  Google Scholar 

  29. Stewart, G.W.: Matrix algorithms. SIAM, (1998)

  30. Agrawal, G.P.: Nonlinear fiber optics, 2nd edn. Academic Press, San Diego (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (NSFC) (61975130), and by Guangdong Basic and Applied Basic Research Foundation (2021A1515010084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Zhang, J., Fan, D. et al. Instability dynamics of Peregrine soliton revisited with a modal expansion technique. Nonlinear Dyn 111, 15373–15380 (2023). https://doi.org/10.1007/s11071-023-08675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08675-5

Keywords

Navigation