Skip to main content

Advertisement

Log in

Bifurcation and transition analysis of multiple attractors wind-induced vibration energy harvesting system with time-delayed feedback under Lévy noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To improve the energy harvesting performance of the multiple attractors wind-induced vibration energy harvester under Lévy noise, the time-delayed feedback control is introduced in this paper. The influence mechanism of time-delayed feedback on the bifurcation of the deterministic system is discussed through parameter bifurcation diagrams and phase diagrams. For the system with noise disturbance, both Lévy noise and time-delayed feedback can significantly control stochastic P-bifurcation. Furthermore, we calculated the mean square voltage (MSV) of the system with several different time-delayed feedback parameters to find an effective way to enhance the energy harvesting performance. When other parameters remain unchanged, the optimal time-delayed feedback parameters can be selected to maximize the MSV. In addition, the first escape probability (FEP) is calculated to reveal the transition mechanism of the system from the low-amplitude region to the high-amplitude region. The results show that the time-delayed feedback can control the system to escape to a larger amplitude region. This research hopes to provide a theoretical reference for the design of high-performance energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The data that support the finding of this study are available from the corresponding author upon reasonable request.

References

  1. Broderick, L.Z., Albert, B.R., Pearson, B.S., Kimerling, L.C., Michel, J.: Design for energy: modeling of spectrum, temperature and device structure dependences of solar cell energy production. Sol. Energy Mater. Sol. Cells 136, 48–63 (2015)

    Article  Google Scholar 

  2. Cheng, M., Zhu, Y.: The state of the art of wind energy conversion systems and technologies: a review. Energy Convers. Manag. 88, 332–347 (2014)

    Article  Google Scholar 

  3. Yilmaz, S., Selim, H.: A review on the methods for biomass to energy conversion systems design. Renew. Sustain. Energy Rev. 25, 420–430 (2013)

    Article  Google Scholar 

  4. Mitcheson, P.D., Green, T.C., Yeatman, E.M., Holmes, A.S.: Architectures for vibration-driven micropower generators. J. Microelectromech. Syst. 13(3), 429–440 (2004)

    Article  Google Scholar 

  5. Yildirim, T., Ghayesh, M.H., Li, W.H., Alici, G.: A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev. 71, 435–449 (2017)

    Article  Google Scholar 

  6. Tang, L., Yang, Y.: Analysis of synchronized charge extraction for piezoelectric energy harvesting. Smart Mater. Struct. 20(8), 085022 (2011)

    Article  Google Scholar 

  7. Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4), 23 (2014)

    Article  Google Scholar 

  8. Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B.: Experimental duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20(10), 11 (2011)

    Article  Google Scholar 

  9. Wu, Z., Niu, F., Liu, R., Ye, W.: Dynamic characteristics of bistable electromagnetic vibration energy harvesters under colored noise excitation. Appl. Math. Mech. 38(5), 570–580 (2017)

    Google Scholar 

  10. Zhou, S., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barrero-Gil, A., Sanz-Andres, A., Roura, M.: Transverse galloping at low Reynolds numbers. J. Fluids Struct. 25(7), 1236–1242 (2009)

    Article  Google Scholar 

  12. Barrero-Gil, A., Alonso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329(14), 2873–2883 (2010)

    Article  Google Scholar 

  13. Kwuimy, C.A.K., Nataraj, C.: Recurrence and joint recurrence analysis of multiple attractors energy harvesting system. Struct. Nonlinear Dyn. Diagnosis Springer Int. Publ. 168, 97–123 (2015)

    Article  MathSciNet  Google Scholar 

  14. Biswas, D., Banerjee, T., Kurths, J.: Control of birhythmicity: a self-feedback approach. Chaos 27(6), 063110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, Q., Sun, Z., Zhang, Y., Xu, W.: Time-delayed feedback control in the multiple attractors wind-induced vibration energy harvesting system. Complexity 1–11 (2019)

  16. Borowiec, M., Litak, G., Friswell, M.I., Ail, S., Bilgen, O.: Energy harvesting in piezoelastic systems driven by random excitations. Int. J. Struct. Stab. Dyn. 13(7), 1–11 (2013)

    Article  Google Scholar 

  17. Yang, Z., Zhu, Y., Zu, J.: Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations. Smart Mater. Struct. 24(2), 025028 (2015)

    Article  Google Scholar 

  18. Fokou, I.S., Buckjohn, C.N., Siewe, M.S., Tchawoua, C.: Probabilistic distribution and stochastic p-bifurcation of a hybrid energy harvester under colored noise. Commun. Nonlinear Sci. Numer. Simul. 56, 177–197 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, M., Li, X.: Two-step approximation procedure for random analyses of tristable vibration energy harvesting systems. Nonlinear Dyn. 98(3), 2053–2066 (2019)

    Article  Google Scholar 

  20. Yu, T., Zhou, S.: Performance investigations of nonlinear piezoelectric energy harvesters with a resonant circuit under white gaussian noises. Nonlinear Dyn. 103, 183–196 (2021)

    Article  Google Scholar 

  21. Zhang, Y., Duan, J., Jin, Y., Li, Y.: Discovering governing equation from data for multi-stable energy harvester under white noise. Nonlinear Dyn. 106(4), 2829–2840 (2021)

    Article  Google Scholar 

  22. Cao, L., Cai, Y., Xu, G., Cui, J.: Research on output characteristics of double-ended fixed beam piezoelectric energy harvester under random excitation. Int. J. Precis. Eng. Manuf. 21, 1075–1083 (2020)

    Article  Google Scholar 

  23. Zhou, S., Yu, T.J.: Performance comparisons of piezoelectric energy harvesters under different stochastic noises. AIP Adv. 10(3), 035033 (2020)

    Article  Google Scholar 

  24. Zhang, W., Xu, W., Su, M.: Response of a stochastic multiple attractors wind-induced vibration energy harvesting system with impacts. Int. J. Non-Linear Mech. 138, 103853 (2022)

    Article  Google Scholar 

  25. Chechkin, A.V., Klafter, J., Gonchar, V.Y., Metzler, R., Tanatarov, L.V.: Bifurcation, bimodality, and finite variance in confined lévy flights. Phys. Rev. E 67(1), (2003)

  26. Chechkin, A.V., Sliusarenko, O.Y., Metzler, R., Klafter, J.: Barrier crossing driven by lévy noise: universality and the role of noise intensity. Phys. Rev. E 75(041101), (2007)

  27. Dybiec, B., Gudowska-Nowak, E., Sokolov, I.M.: Transport in a lévy ratchet: group velocity and distribution spread. Phys. Rev. E 78(011117), (2008)

  28. Chen, C., Kang, Y.: Dynamics of a stochastic multi-strain sis epidemic model driven by lévy noise. Commun. Nonlinear Sci. Numer. Simul. 42, 379 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lü, Y., Lu, H.: Anomalous dynamics of inertial systems driven by colored lévy noise. J. Stat. Phys. 176, 1046–1056 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, Y., Wu, J., Du, L., Yang, H.: Stochastic resonance in a genetic toggle model with harmonic excitation and lévy noise. Chaos Solitons Fractals 92, 91–100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Y., Jin, Y.: Colored lévy noise-induced stochastic dynamics in a tri-stable hybrid energy harvester. J. Comput. Nonlinear Dyn. 16(4), 041005 (2021)

  32. Just, W., Bernard, T., Ostheimer, M., Reibold, E., Benner, H.: Mechanism of time-delayed feedback control. Phys. Rev. Lett. 78(2), 203 (1997)

    Article  Google Scholar 

  33. Bichri, A., Kirrou, I., Belhaq, M.: Energy harvesting of nonlinear damping system under time delayed feedback gain. MATEC Web Conf. 83, 02002 (2016)

  34. Sun, X., Xu, J., Fu, J.: The effect and design of time delay in feedback control for a nonlinear isolation system. Mech. Syst. Signal Process. 87, 206–217 (2017)

    Article  Google Scholar 

  35. Yang, T., Cao, Q.: Delay-controlled primary and stochastic resonances of the sd oscillator with stiffness nonlinearities. Mech. Syst. Signal Process. 103, 216–235 (2018)

    Article  Google Scholar 

  36. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421 (1992)

    Article  Google Scholar 

  37. Balanov, A.G., Janson, N.B., Scholl, E.: Delayed feedback control of chaos: bifurcation analysis. Phys. Rev. E 71, 016222 (2005)

    Article  Google Scholar 

  38. Kwuimy, C.A.K., Woafo, P.: Dynamics, chaos and synchronization of self-sustained electromechanical systems with clamped-free flexible arm. Nonlinear Dyn. 53, 201–213 (2008)

    Article  MATH  Google Scholar 

  39. Barrero-Gil, A., Sanz-Andres, A., Alonso, G.: Hysteresis in transverse galloping: the role of the inflection points. J. Fluids Struct. 25(6), 1007–1020 (2009)

    Article  Google Scholar 

  40. Weron, A., Weron, R.: Computer Simulation of lévy \(\alpha \)-Stable Variables and Processes, pp. 379–392. Springer, Berlin Heidelberg (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewer for their careful reading and suggestions. This research was supported by the National Natural Science Foundation of China (Grant Nos.: 12072261, 11872305, 11972291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenting Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (rar 9048 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Xu, W., Tang, Y. et al. Bifurcation and transition analysis of multiple attractors wind-induced vibration energy harvesting system with time-delayed feedback under Lévy noise. Nonlinear Dyn 111, 10791–10808 (2023). https://doi.org/10.1007/s11071-023-08417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08417-7

Keywords

Navigation