Skip to main content
Log in

Modulation instability, localized wave solutions of the modified Gerdjikov–Ivanov equation with anomalous dispersion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Solving new integrable systems and exploring their physical applications have been a hot topic. This paper gives the modulation instability in the continuous wave background of the new modified Gerdjikov–Ivanov equation with anomalous dispersion. Based on the extend Lax pair, the localized wave solutions of the new model are obtained via generalized Darboux transformation method, various types solutions including breather, rogue waves, and interaction solutions are presented and their dynamic properties are analyzed. The results obtained have certain application value for nonlinear optics and long-distance transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors declare that all data generated or analyzed during this study are included in this article.

References

  1. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scatting transform Fourier analysis for nonlinear problems. Stud. Appl. Math 53, 249–315 (1974)

    Article  MATH  Google Scholar 

  2. Song, J.Y., Xiao, Y., Zhang, C.P.: Darboux transformation, exact solutions and conservation laws for the reverse space-time Fokas–Lenells equation. Nonlinear Dyn. 107, 3805–3818 (2022)

    Article  Google Scholar 

  3. McAnally, M., Ma, W.X.: Explicit solutions and Darboux transformations of a generalized D-Kaup-Newell hierarchy. Nonlinear Dyn. 102, 2767–2782 (2020)

    Article  Google Scholar 

  4. Yuan, Y.Q., Tian, B., Qu, Q.X., Zhang, C.R., Du, X.X.: Lax pair, binary Darboux transformation and dark solitons for the three-component Gross–Pitaevskii system in the spinor Bose–Einstein condensate. Nonlinear Dyn. 99, 3001–3011 (2020)

    Article  Google Scholar 

  5. Li, N.N., Guo, R.: Nonlocal continuous Hirota equation: Darboux transformation and symmetry broken and unbroken soliton solutions. Nonlinear Dyn. 105, 617–628 (2021)

    Article  Google Scholar 

  6. Liu, X.Y., Triki, H., et al.: Generation and control of multiple solitons under the influence of parameters. Nonlinear Dyn. 95, 143–150 (2019)

    Article  MATH  Google Scholar 

  7. Liu, W.J., Zhang, Y., Wazwaz, A.M., Zhou, Q.: Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber. Appl. Math. Comput. 361, 325–331 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Guan, X., Liu, W.J., Zhou, Q., Biswas, A.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 98, 1491–1500 (2019)

    Article  Google Scholar 

  9. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation and its Set Application in Soliton Theory. Shanghai Science and Technology Education Press, Shanghai (1999)

    Google Scholar 

  10. Hitrota, R.: The Direct Methods in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  11. Zha, Q.L.: Nonlinear dynamics of higher-order rogue waves in a novel complex nonlinear wave equation. Nonlinear Dyn. 99, 2945–2960 (2020)

    Article  Google Scholar 

  12. Ji, T., Zhai, Y.Y.: Soliton, breather and rogue wave solutions of the coupled Gerdjikov–Ivanov equation via Darboux transformation. Nonlinear Dyn. 101, 619–631 (2020)

    Article  Google Scholar 

  13. Chen, S.S., Tian, B., Tian, H.Y., Yang, D.Y.: N-Fold generalized Darboux transformation and semirational solutions for the Gerdjikov–Ivanov equation for the Alfvén waves in a plasma. Nonlinear Dyn. 108, 1561–1572 (2022)

    Article  Google Scholar 

  14. Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Article  Google Scholar 

  15. Ankiewicz, A.: Rogue and semi-rogue waves defined by volume. Nonlinear Dyn. 104, 4241–4252 (2021)

    Article  Google Scholar 

  16. Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials. Nonlinear Dyn. 102, 379–391 (2020)

  17. Wang, H.T., Wen, X.Y.: Dynamics of discrete soliton propagation and elastic interaction in a higher-order coupled Ablowitz–Ladik equation. Appl. Math. Lett. 100, 106013 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, Y.Q., Tang, Y.H., Manafian, J., Rezazadeh, H., Osman, M.S.: Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model. Nonlinear Dyn. 105, 2539–2548 (2021)

    Article  Google Scholar 

  19. Yan, Z.Y.: Financial rogue waves. Commun. Theor. Phys. 54, 947 (2010)

    Article  MATH  Google Scholar 

  20. Xu, T., Chen, Y.: Darboux transformation of the coupled nonisospectral Gross–Pitaevskii system and its multi-component generalization. Commun. Nonlinear Sci. Numer. Simulat. 57, 276–289 (2018)

  21. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

  22. Yuan, Y.Q., Tian, B., Qu, Q.X., Zhang, C.R., Du, X.X.: Lax pair, binary Darboux transformation and dark solitons for the three-component Gross–Pitaevskii system in the spinor Bose-Einstein condensate. Nonlinear Dyn. 99, 3001–3011 (2020)

    Article  Google Scholar 

  23. He, J.S., Zhang, H.R., Wang, L.H., Porsezian, K., Fokas, A.S.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013)

    Article  Google Scholar 

  24. Wen, X.Y., Yang, Y.Q., Yan, Z.Y.: Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation. Phys. Rev. E 92, 012917 (2015)

    Article  MathSciNet  Google Scholar 

  25. Dong, M.J., Tian, L.X., Wei, J.D., Wang, Y.: Some localized wave solutions for the coupled Gerdjikov–Ivanov equation. Appl. Math. Lett 122, 107483 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo, L.J., Zhang, Y.S., Xu, S.W., Wu, Z.W., He, J.S.: The higher order Rogue Wave solutions of the Gerdjikov–Ivanov equation. Physica Scripta 89, 240–240 (2014)

    Article  Google Scholar 

  27. Shi, Y., Shen, S.F., Zhao, S.L.: Solutions and connections of nonlocal derivative nonlinear Schrödinger equations. Nonlinear Dyn. 95, 1257–1267 (2019)

    Article  MATH  Google Scholar 

  28. Ding, C.C., Gao, Y.T., Li, L.Q.: Breathers and rogue waves on the periodic background for the Gerdjikov–Ivanov equation for the Alfvén waves in an astrophysical plasma. Chaos Soliton Fract 120, 259–265 (2019)

    Article  MATH  Google Scholar 

  29. Campos, L.M.B.C.: On the generation and radiation of magneto-acoustic waves. J. Fluid Mech. 81, 529–534 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hollweg, J.V.: Alfvén waves in a two-fluid model of the solar wind. Astrophys. J. 181, 547–566 (1973)

  31. Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear Hamiltonian systems by invers scattering method. Phys. Scr. 20, 490–492 (1979)

    Article  MATH  Google Scholar 

  32. Gerdjikov, V.S., Ivanov, M.I.: A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures,. Bulgar. J. Phys. 10, 130–143 (1983)

    MathSciNet  Google Scholar 

  33. Nimmo, J.J.C., Yilmaz, H.: On Darboux transformations for the derivative nonlinear Schrödinger equation. J Nonlinear Math Phy 21, 278–293 (2014)

    Article  MATH  Google Scholar 

  34. Zhao, L.C., Ling, L.: Quantitative relations between modulational instability and several well-known nonlinear excitations. J. Opt. Soc. Am. B 33, 850–856 (2016)

Download references

Acknowledgements

This work of Wenjun Liu is supported by the National Natural Science Foundation of China (Grant 12075034, 11975001, 11875008); the Beijing Natural Science Foundation (Nos. JQ21019). This work of Xue Guan is supported by BUPT Excellent Ph.D. Students Foundation (Grant No. CX2020219). This work of Haotian Wang is supported by BUPT Excellent Ph.D. Students Foundation (Grant No. CX2022238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Ethical approval

The authors declare that they have adhered to the ethical standards of research execution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Wang, H., Liu, W. et al. Modulation instability, localized wave solutions of the modified Gerdjikov–Ivanov equation with anomalous dispersion. Nonlinear Dyn 111, 7619–7633 (2023). https://doi.org/10.1007/s11071-022-08210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08210-y

Keywords

Navigation