Skip to main content
Log in

The study of periodic orbits in the spatial collinear restricted four-body problem with non-spherical primaries

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the current manuscript, we have explored the spatial collinear restricted four-body problem(SCR4BP) in which the three bodies, known as primaries, are situated in the collinear Euler’s configuration, where the primary \(P_0\)(\(m_0 = \beta m\)) (taken as central primary) is placed at the origin, and other two primaries \(P_1\)(\(m_1\)) and \(P_2\) \((m_2)\), which are non-spherical bodies, are placed at the same distance from the origin having masses \(m_1=m_2=m\). The massless fourth body known as test particle (or infinitesimal body) is moving under the Newtonian gravitational attraction of the primaries. This fourth body does not influence the motion of the primaries but its motion is effected by them as in the restricted three-body problem (R3BP). We have determined the long- and short-period orbits around those libration points which lie on the \(y-\)axis only in the SCR4BP for the case of two equal masses by using Fourier series method. We have studied the evolution of families of these orbits as the oblateness parameter A and mass parameter \(\beta \) evolve. The time period T of the periodic orbit is studied by using the variational graphs. By retaining the terms up to third order in the Fourier expansions, we have explored how the oblateness of the peripheral primaries as well as the mass parameter affect not only the shape, size and period but also the networks of long- and short-period orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

All the incorporated data that support the findings of this study are available in the article and in its supplementary material files.

References

  1. Alvarez-Ramírez, M., Barrabés, E., Medinaa, M., Ollé, M.: Ejection-Collision orbits in the symmetric collinear four-body problem. Communicat. Nonlinear Sci. Num. Simulat. 71, 82–100 (2019). https://doi.org/10.1016/j.cnsns.2018.10.026

    Article  MATH  Google Scholar 

  2. Baltagiannis, A.N., Papadakis, K.E.: Families of periodic orbits in the restricted four-body problem. Astrophys. Space Sci. 336, 357–367 (2011). https://doi.org/10.1007/s10509-011-0778-7

    Article  MATH  Google Scholar 

  3. Baltagiannis, A.N., Papadakis, K.E.: Periodic solutions in the Sun-Jupiter-Trojan Asteroid-Spacecraft system. Planet. Space Sci. 75, 148–157 (2013). https://doi.org/10.1016/j.pss.2012.11.006

    Article  Google Scholar 

  4. Danby, J.M.A.: Two notes on the Copenhagen problem. Celest. Mech. 33, 251–260 (1984)

    Article  MATH  Google Scholar 

  5. Elipe, A., Lara, M.: Periodic orbits in the restricted three body problem with radiation pressure. Celest. Mech. Dyn. Astron. 68, 1–11 (1997). https://doi.org/10.1023/A:1008233828923

    Article  MATH  Google Scholar 

  6. Euler, L.: Novi Comm. Acad. Sci. Imp. Petrop. 11, 144 (1767)

  7. Giacaglia, G.E.O.: Regularization of the restricted problem of four bodies. Astron. J. 69, 165 (1967). https://doi.org/10.1086/110291

    Article  Google Scholar 

  8. Hénon, M.: Exploration numérique du probléme restreint. I Masses égales, Orbites periodiques. Ann. d’Astrophysique 28, 499–511 (1965)

  9. Hénon, M.:Generating families in the restricted three-body problem. Springer Science and Business Media 52, (2003)

  10. Kalvouridis, T., Arribas, M., Elipe, A.: Dynamical properties of the restricted four-body problem with radiation pressure. Mech. Res. Commun. 33, 811–817 (2006). https://doi.org/10.1016/j.mechrescom.2006.01.008

    Article  MATH  Google Scholar 

  11. Kalvouridis, T., Arribas, M., Elipe, A.: Parametric evolution of periodic orbits in the restricted four-body problem with radiation pressure. Planet. Space Sci. 55(4), 475–493 (2007). https://doi.org/10.1016/j.pss.2006.07.005

    Article  Google Scholar 

  12. Llibre, J., Paşca, D., Valls, C.: The circular restricted 4-body problem with three equal primaries in the collinear central configuration of the 3-body problem. Celestial Mech. Dyn. Astron. 133, 53 (2021). https://doi.org/10.1007/s10569-021-10052-6

    Article  MATH  Google Scholar 

  13. Majorana, A.: On a four-body problem. Celestial Mech. 25, 267–270 (1981). https://doi.org/10.1007/BF01228963

    Article  MATH  Google Scholar 

  14. Maranhão, D.L., Llibre, J.: Ejection-collision orbits and invariant punctured tori in a restricted four-body problem. Celest. Mech. Dyn. Astron. 71, 1–14 (1999). https://doi.org/10.1023/A:1008389427687

  15. Michalodimitrakis, M.: The circular restricted four-body problem. Astrophys. Space Sci. 75, 289–305 (1981). https://doi.org/10.1007/BF00648643

  16. Moulton, F.R.: On a class of particular solutions of the problem of four bodies. Trans. Amer. Math. Soc. 1, 17–29 (1900)

    Article  MATH  Google Scholar 

  17. Mittal, A., Ahmad, I., Bhatnagar, K.B.: Periodic orbits generated by Lagrangian solutions of the restricted three body problem when one of the primaries is an oblate body. Astrophys. Space Sci. 319, 63–73 (2008). https://doi.org/10.1007/s10509-008-9942-0

  18. Palacios, M., Arribas, M., Abad, A., Elipe, A.: Symmetric periodic orbits in the Moulton-Copenhagen problem. Celest. Mech. Dyn. Astron. 131, 16 (2019). https://doi.org/10.1007/s10569-019-9893-5

    Article  MATH  Google Scholar 

  19. Papadakis, K.E.: Asymptotic orbits in the restricted four-body problem. Planetary Space Sci. 55, 1368–1379 (2007). https://doi.org/10.1016/j.pss.2007.02.005

    Article  Google Scholar 

  20. Papadouris, J.P., Papadakis, K.E.: Periodic solutions in the photogravitational restricted four-body problem. Monthly Notices Royal Astron. Soc. 442, 1628–1639 (2014). https://doi.org/10.1093/mnras/stu981

    Article  Google Scholar 

  21. Pedersen, P.: On the periodic orbits in the neighbourhood of the triangular equilibrium points in the restricted problem of three bodies. Monthly Notices Royal Astronomical Soc. 94, 167–184 (1933). https://doi.org/10.1093/mnras/94.2.167

    Article  MATH  Google Scholar 

  22. Pedersen, P.: Fourier series for the periodic orbits around the triangular libration points. Monthly Notices Royal Astronomical Soc. 95, 482–495 (1935)

    Article  MATH  Google Scholar 

  23. Poincaré, H.: Les Méthodes nouvelles de la Mécanique Céleste. Gauthier-Villars et fils, Paris (1892)

    MATH  Google Scholar 

  24. Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids-I. Long-term stability and diffusion. Monthly Notices of the Royal Astronomical Society 372, 1463–1482 (2006) doi: https://doi.org/10.1111/j.1365-2966.2006.11008.x

  25. Strömgren, E.: Connaissance actuelle des orbites dans le problme des trois. corps. Bull. Astron 9, 87–130 (1933)

  26. Suraj, M.S., Aggarwal, R., Mittal, A., Meena, O.P., Asique, M.C.: On the spatial collinear restricted four-body problem with non-spherical primaries. Chaos, Solitons and Fractals 133, 109609 (2020). https://doi.org/10.1016/j.chaos.2020.109609

    Article  MATH  Google Scholar 

  27. Szebehely, V.: Theory of Orbits. Academic Press, London (1967)

    MATH  Google Scholar 

  28. Zotos, E.E.: Classifying orbits in the restricted three-body problem. Nonlinear Dyn. 82, 1233 (2015). https://doi.org/10.1007/s11071-015-2229-4

    Article  MATH  Google Scholar 

  29. Zotos, E.E.: Crash test for the Copenhagen problem with oblateness. Celest. Mech. Dyn. Astron. 122, 75 (2015). https://doi.org/10.1007/s10569-015-9611-x

  30. Zotos, E.E.: How does the oblateness coefficient influence the nature of orbits in the restricted three-body problem? Astrophys. Space Sci. 358, 33 (2015). https://doi.org/10.1007/s10509-015-2435-z

  31. Zotos, E.E.: Classifying orbits in the classical Hénon-Heiles Hamiltonian system. Nonlinear Dyn 79, 1665–1677 (2015). https://doi.org/10.1007/s11071-014-1766-6

  32. Zotos, E.E.: Orbit classification in the Hill problem: I. The classical case. Nonlinear Dyn. 89, 901–923 (2017). https://doi.org/10.1007/s11071-017-3491-4

    Article  MATH  Google Scholar 

  33. Zotos, E.E., Nagler, J.: On the classification of orbits in the three-dimensional Copenhagen problem with oblate primaries. Inter. J. Non-Linear Mech. 108, 55–71 (2019). https://doi.org/10.1016/j.ijnonlinmec.2018.10.009

    Article  Google Scholar 

  34. Zotos, E.E., Jung, C., Papadakis, K.E.: Families of periodic orbits in a double-barred galaxy model. Commun. Nonlinear Sci. Numer. Simulat. 89, 105283 (2020). https://doi.org/10.1016/j.cnsns.2020.105283

  35. Zotos, E.E., Erdi, B., Saeed, T., Alhodaly, M.S.: Orbit classification in exoplanetary systems. Astron. Astrophys. 634, A60 (2020). https://doi.org/10.1051/0004-6361/201937224

Download references

Funding

The authors state that there was no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Chand Asique.

Ethics declarations

Conflict interest

The authors state that they have not received any research grants and have no known competing personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendixes

The values of various coefficients

$$\begin{aligned} \wp _{00}&= \frac{1}{\sqrt{\kappa }}\\ \wp _{01}&=-\frac{{\mathscr {L}}}{\kappa ^{3/2}} \\ \wp _{02}&=-\frac{1}{2 \kappa ^{3/2}}\\ \wp _{03}&= \frac{3 {\mathscr {L}}^2-\kappa }{2 \kappa ^{5/2}}\\ \wp _{04}&= \frac{3 {\mathscr {L}}}{2 \kappa ^{5/2}}\\ \wp _{05}&= \frac{{\mathscr {L}}(3 \kappa -5 {\mathscr {L}}^2)}{2 \kappa ^{7/2}}\\ \wp _{06}&= \frac{3}{8 \kappa ^{5/2}}\\ \wp _{07}&= \frac{3 (\kappa -5 {\mathscr {L}}^2)}{4 \kappa ^{7/2}}\\ \wp _{08}&= \frac{3 \kappa ^2-30 \kappa {\mathscr {L}}^2+35 {\mathscr {L}}^4}{8 \kappa ^{9/2}}\\ \wp _{10}&= \frac{2}{\sqrt{1+4 \kappa }}\\ \wp _{11}&= -\frac{8 {\mathscr {L}}}{(1+4 \kappa )^{3/2}} \\ \wp _{12}&= \frac{8 \left( 1-2 \kappa \right) }{(1+4 \kappa )^{5/2}} \\ \wp _{13}&= \frac{4\left( 12 {\mathscr {L}}^2-4\kappa -1\right) }{(1+4 \kappa )^{5/2}}\\ \wp _{14}&= \frac{192 \left( \kappa -1\right) {\mathscr {L}}}{(1+4 \kappa )^{7/2}}\\ \wp _{15}&= \frac{16 {\mathscr {L}}\left( 3+12\kappa -20{\mathscr {L}}^2\right) }{(1+4 \kappa )^{7/2}}\\ \wp _{16}&= \frac{32 \left( 1-12 \kappa +6 \kappa ^2\right) }{(1+4 \kappa )^{9/2}} \\ \wp _{17}&= \frac{96 \left( 4 \kappa ^2+30 {\mathscr {L}}^2-20 \kappa {\mathscr {L}}^2-3\kappa -1\right) }{(1+4 \kappa )^{9/2}}\\ \wp _{18}&= \frac{4 \left( 3+24 \kappa +48 \kappa ^2-120 {\mathscr {L}}^2-480 \kappa {\mathscr {L}}^2+560 {\mathscr {L}}^4\right) }{(1+4 \kappa )^{9/2}}\\ \wp _{20}&= \frac{2}{\sqrt{1+4 \kappa }}\\ \wp _{21}&= -\frac{8 {\mathscr {L}}}{(1+4 \kappa )^{3/2}}\\ \wp _{22}&= \frac{8 \left( 1-2 \kappa \right) }{(1+4 \kappa )^{5/2}}\\ \wp _{23}&= \frac{4\left( 12 {\mathscr {L}}^2-4 \kappa -1\right) }{(1+4 \kappa )^{5/2}}\\ \wp _{24}&= \frac{192 \left( \kappa -1\right) {\mathscr {L}}}{(1+4 \kappa )^{7/2}} \end{aligned}$$
$$\begin{aligned} \wp _{25}&= \frac{16 {\mathscr {L}}\left( 3+12 \kappa -20 {\mathscr {L}}^2\right) }{(1+4 \kappa )^{7/2}}\\ \wp _{26}&= \frac{32 \left( 1-12 \kappa +6 \kappa ^2\right) }{(1+4 \kappa )^{9/2}}\\ \wp _{27}&= \frac{96 \left( 4 \kappa ^2+30 {\mathscr {L}}^2-1-3\kappa -20 \kappa {\mathscr {L}}^2\right) }{(1+4 \kappa )^{9/2}}\\ \wp _{28}&=\frac{4\left( 3+24 \kappa +48 \kappa ^2-120 {\mathscr {L}}^2-480 \kappa {\mathscr {L}}^2+560 {\mathscr {L}}^4 \right) }{(1+4 \kappa )^{9/2}} \end{aligned}$$

The values of various coefficients

$$\begin{aligned} \wp _{10}^*&= \frac{8}{(1+4 \kappa )^{3/2}}\\ \wp _{11}^*&=- \frac{96 {\mathscr {L}}}{(1+4 \kappa )^{5/2}} \\ \wp _{12}^*&= \frac{192 \left( 1-\kappa \right) }{(1+4 \kappa )^{7/2}} \\ \wp _{13}^*&=\frac{48 \left( 20 {\mathscr {L}}^2-4\kappa -1\right) }{(1+4 \kappa )^{7/2}}\\ \wp _{14}^*&= \frac{1920 (2 \kappa -3){\mathscr {L}}}{(1+4 \kappa )^{9/2}}\\ \wp _{15}^*&= \frac{320 {\mathscr {L}} \left( 3+12\kappa -28 {\mathscr {L}}^2\right) }{(1+4 \kappa )^{9/2}}\\ \wp _{16}^*&= \frac{1920 \left( 1-6\kappa +2\kappa ^2 \right) }{(1+4 \kappa )^{11/2}}\\ \wp _{17}^*&= \frac{960 \left( 8 \kappa ^2+112 {\mathscr {L}}^2-3-10\kappa -56 \kappa {\mathscr {L}}^2 \right) }{(1+4 \kappa )^{11/2}} \\ \wp _{18}^*&= \frac{240\left( 1+8\kappa +16 \kappa ^2 -56 {\mathscr {L}}^2-224 \kappa {\mathscr {L}}^2+336 {\mathscr {L}}^4 \right) }{(1+4 \kappa )^{11/2}}\\ \wp _{20}^*&= \frac{8}{(1+4 \kappa )^{3/2}}\\ \wp _{21}^*&= -\frac{96 {\mathscr {L}}}{(1+4 \kappa )^{5/2}}\\ \wp _{22}^*&= \frac{192 \left( 1-\kappa \right) }{(1+4 \kappa )^{7/2}}\\ \wp _{23}^*&= \frac{48\left( 20 {\mathscr {L}}^2-4 \kappa -1 \right) }{(1+4 \kappa )^{7/2}}\\ \wp _{24}^*&= \frac{1920 (2 \kappa -3){\mathscr {L}}}{(1+4 \kappa )^{9/2}}\\ \wp _{25}^*&= \frac{320 {\mathscr {L}}\left( 3+12 \kappa -28 {\mathscr {L}}^2\right) }{(1+4 \kappa )^{9/2}}\\ \wp _{26}^*&= \frac{1920 \left( 1-6 \kappa +2 \kappa ^2 \right) }{(1+4 \kappa )^{11/2}}\\ \wp _{27}^*&= \frac{960 \left( 8 \kappa ^2+112 {\mathscr {L}}^2-3-10 \kappa -56 \kappa {\mathscr {L}}^2\right) }{(1+4 \kappa )^{11/2}}\\ \wp _{28}^*&= \frac{240\left( 1+8\kappa +16 \kappa ^2-56 {\mathscr {L}}^2-224 \kappa {\mathscr {L}}^2+336 {\mathscr {L}}^4\right) }{(1+4 \kappa )^{11/2}} \end{aligned}$$

The values of various coefficients

$$\begin{aligned} \Omega _{0}^*&=\frac{A \left( \wp _{10}^*+\wp _{20}^*\right) +2 (\beta \wp _{00}+\wp _{10}+\wp _{20})}{2 \Lambda }\\ \Omega _{1}^*&=\frac{A \left( \wp _{11}^*+\wp _{21}^*\right) +2 (\beta \wp _{01}+\wp _{11}+\wp _{21})}{2 \Lambda }\\ \Omega _{2}^*&=\frac{A \left( \wp _{12}^*+\wp _{22}^*\right) +2 (\beta \wp _{02}+\wp _{12}+\wp _{22})}{2 \Lambda }\\ \Omega _{3}^*&=\frac{A \left( \wp _{13}^*+\wp _{23}^*\right) +2 (\beta \wp _{03}+\wp _{13}+\wp _{23})}{2 \Lambda }\\ \Omega _{4}^*&=\frac{A \left( \wp _{14}^*+\wp _{24}^*\right) +2 (\beta \wp _{04}+\wp _{14}+\wp _{24})}{2 \Lambda }\\ \Omega _{5}^*&=\frac{A \left( \wp _{15}^*+\wp _{25}^*\right) +2 (\beta \wp _{05}+\wp _{15}+\wp _{25})}{2 \Lambda }\\ \Omega _{6}^*&= \frac{A \left( \wp _{16}^*+\wp _{26}^*\right) +2 (\beta \wp _{06}+\wp _{16}+\wp _{26})}{2 \Lambda }\\ \Omega _{7}^*&=\frac{A \left( \wp _{17}^*+\wp _{27}^*\right) +2 (\beta \wp _{07}+\wp _{17}+\wp _{27})}{2 \Lambda }\\ \Omega _{8}^*&=\frac{A \left( \wp _{18}^*+\wp _{28}^*\right) +2 (\beta \wp _{08}+\wp _{18}+\wp _{28})}{2 \Lambda } \end{aligned}$$

The values of various coefficients

$$\begin{aligned} A_{01}&=\frac{1}{2}a_1^2+\frac{1}{2}a_{-1}^2\\ A_{02}&=2 a_0a_1+a_1 a_2+a_{-1}a_{-2}\\ A_{03}&=2a_0a_{-1}+a_1a_{-2}-a_{-1}a_{2}\\ A_{04}&=\frac{1}{2}a_1^2-\frac{1}{2}a_{-1}^2\\ A_{05}&= a_1 a_{-1}\\ A_{06}&=a_1a_2-a_{-1}a_{-2}\\ A_{07}&=a_1a_{-2}+a_{-1}a_{2}\\ B_{01}&=\frac{1}{2}a_1 b_1+\frac{1}{2}a_{-1}b_{-1}\\ B_{02}&=\frac{1}{2} (a_1b_2+a_2b_1)+\frac{1}{2}(a_{-1}b_{-2}+a_{-2}b_{-1})\\ {}&\quad +a_1b_0+a_0b_1 \\ B_{03}&=\frac{1}{2}(a_1b_{-2}+a_{-2}b_1)-\frac{1}{2}(a_{-1}b_{2}+a_{2}b_{-1})\\ {}&\quad +a_{-1}b_{0}+a_0 b_{-1}\\ B_{04}&=\frac{1}{2}a_1 b_1-\frac{1}{2}a_{-1}b_{-1}\\ B_{05}&=\frac{1}{2}a_1 b_{-1}+\frac{1}{2}a_{-1}b_{1}\\ B_{06}&=\frac{1}{2} (a_1b_2+a_{2}b_{1})-\frac{1}{2}(a_{-1}b_{-2}+a_{-2}b_{-1})\\ B_{07}&=\frac{1}{2}(a_1b_{-2}+a_{-2}b_{1})+\frac{1}{2}(a_{-1}b_2+a_2b_{-1})\\ C_{01}&=\frac{1}{2}b_1^2+\frac{1}{2}b_{-1}^2\\ C_{02}&=2b_0b_1+b_1b_2+b_{-1}b_{-2}\\ C_{03}&=2b_0b_{-1}+b_1b_{-2}-b_{-1}b_{2}\\ C_{04}&=\frac{1}{2}b_1^2-\frac{1}{2}b_{-1}^2\\ C_{05}&= b_1 b_{-1}\\ C_{06}&=b_1b_2-b_{-1}b_{-2}\\ C_{07}&=b_1b_{-2}+b_{-1}b_{2}\\ D_{01}&=0\\ D_{02}&=\frac{3}{4}a_1^3+\frac{3}{4}a_1 a_{-1}^2\\ D_{03}&=\frac{3}{4}a_{-1}^3+\frac{3}{4}a_1^2a_{-1}\\ D_{04}&=0\\ D_{05}&=0\\ D_{06}&=\frac{1}{4} a_1^3-\frac{3}{4} a_{1}a_{-1}^2\\ D_{07}&=-\frac{1}{4} a_{-1}^3+\frac{3}{4} a_{1}^2a_{-1}\\ E_{01}&=0\\ E_{02}&=\frac{3}{4}a_1^2b_1+\frac{1}{4}a_{-1}^2b_1+\frac{1}{2}a_1 a_{-1}b_{-1}\\ E_{03}&=\frac{3}{4}a_{-1}^2b_{-1}+\frac{1}{4}a_1^2b_{-1}+\frac{1}{2}a_1 a_{-1}b_{1}\\ E_{04}&=0\\ E_{05}&=0\\ E_{06}&=\frac{1}{4}a_1^2b_1-\frac{1}{4}a_{-1}^2b_1-\frac{1}{2}a_1 a_{-1}b_{-1}\\ E_{07}&=\frac{1}{4}a_1^2b_{-1}-\frac{1}{4}a_{-1}^2b_{-1}+\frac{1}{2}a_1 a_{-1}b_{1}\\ F_{01}&=0\\ F_{02}&=\frac{3}{4}a_1b_1^2+\frac{1}{4}a_{1}b_{-1}^2+\frac{1}{2}a_{-1} b_1b_{-1}\\ F_{03}&=\frac{3}{4}a_{-1}b_{-1}^2+\frac{1}{4}a_{-1}b_1^2+\frac{1}{2}a_1 b_1 b_{-1}\\ F_{04}&=0\\ F_{05}&=0\\ F_{06}&=\frac{1}{4}a_1b_1^2-\frac{1}{4}a_{1}b_{-1}^2-\frac{1}{2}a_{-1} b_1b_{-1}\\ F_{07}&=\frac{1}{4}a_{-1}b_1^2-\frac{1}{4}a_{-1}b_{-1}^2+\frac{1}{2}a_1 b_1 b_{-1}\\ G_{01}&=0\\ G_{02}&=\frac{3}{4} b_1^3+\frac{3}{4} b_{1}b_{-1}^2\\ G_{03}&=\frac{3}{4} b_{-1}^3+\frac{3}{4} b_{1}^2b_{-1}\\ G_{04}&=0\\ G_{05}&=0\\ G_{06}&=\frac{1}{4} b_1^3-\frac{3}{4} b_{1}b_{-1}^2\\ G_{07}&=-\frac{1}{4} b_{-1}^3+\frac{3}{4} b_{1}^2b_{-1} \end{aligned}$$

The values of various coefficients

$$\begin{aligned} \lambda _{1}&=-3 \Gamma _{1}^2 \Omega ^*_{5}\\ \lambda _{2}&=-(4 {\Omega ^*_4}+6 \Gamma _{1} {\Omega ^*_5)}\\ \lambda _{3}&=-3 {\Omega ^*_5}\\ \lambda _{4}&=3 {\Omega ^*_5} \Gamma _{1}^3\\ \lambda _{5}&=3(4{\Omega ^*_4} \Gamma _{1}+6{\Omega ^*_5} \Gamma _{1}^2)\\ \lambda _{6}&=27{\Omega ^*_5} \Gamma _{1}\\ \lambda _{7}&=12{\Omega ^*_5} \\ \lambda _{8}&=3{\Omega ^*_5} \Gamma _{1}^2+{\Omega ^*_4} \Gamma _{1} \Gamma _{2}\\ \lambda _{9}&=4{\Omega ^*_4}(\Gamma _{1}-1)+6{\Omega ^*_5} \Gamma _{1}+{\Omega ^*_4} \Gamma _{2} \\ \lambda _{10}&=4 {\Omega ^*_4}+3 {\Omega ^*_5} \end{aligned}$$

The values of various coefficients

$$\begin{aligned} \lambda _{11}&={\Omega ^*_4} (2 \Gamma _{1} \lambda _{9}+\lambda _{5}+2 \lambda _{8})\\ \lambda _{12}&=24 \lambda _{8} {\Omega ^*_4}-9 {\Omega ^*_4} (2 \Gamma _{1} \lambda _{8}+\lambda _{4})\\ \lambda _{13}&=\lambda _{12}-\Gamma _{2} (\lambda _{11}+3 \Gamma _{1}^2 \Gamma _{3} {\Omega ^*_7})\\ \lambda _{14}&=36 \Gamma _{1} \Gamma _{3} {\Omega ^*_7}+18 {\Omega ^*_8} (5 \Gamma _{1}^3-3 \Gamma _{1}^2 \Gamma _{3})\\ \lambda _{15}&=\lambda _{14}+24 \lambda _{9} {\Omega ^*_4}-9 {\Omega ^*_5} (\Gamma _{1} \lambda _{6}+\lambda _{5})\\ \lambda _{16}&={\Omega ^*_4} (2 \Gamma _{1} \lambda _{9}+\lambda _{5}+2 \lambda _{8})+3 \Gamma _{1}^2 \Gamma _{3} {\Omega ^*_7}\\ \lambda _{17}&=24 \Gamma _{3} {\Omega ^*_6}-3 {\Omega ^*_7} (2 \Gamma _{1} \Gamma _{3}-5 \Gamma _{1}^2)\\ \lambda _{18}&={\Omega ^*_4} (2 (\Gamma _{1} \lambda _{10}+\lambda _{9})+\lambda _{6})\\ \lambda _{19}&=24 \lambda _{10} {\Omega ^*_4}+18 {\Omega ^*_8} (15 \Gamma _{1}^2-3 \Gamma _{1} \Gamma _{3})\\ \lambda _{20}&=120 {\Omega ^*_6}-3 {\Omega ^*_7} (10 \Gamma _{1}-\Gamma _{3})\\ \lambda _{21}&=\lambda _{19}-\Gamma _{2} (\lambda _{20}+{\Omega ^*_4} (2 \lambda _{10}+\lambda _{7}))\\ \lambda _{22}&={\Omega ^*_4} (2 (\Gamma _{1} \lambda _{10}+\lambda _{9})+\lambda _{6})\\ \lambda _{23}&=-\lambda _{22}+24 \Gamma _{3} {\Omega ^*_6}+3 {\Omega ^*_7} (5 \Gamma _{1}^2-2 \Gamma _{1} \Gamma _{3})\\ \lambda _{24}&=\lambda _{21}+9 \lambda _{23}-9 {\Omega ^*_5} (\Gamma _{1} \lambda _{7}+\lambda _{6})\\ \lambda _{25}&=15 \Gamma _{2} {\Omega ^*_7}-180 {\Omega ^*_7}+18 {\Omega ^*_8} (15 \Gamma _{1}-\Gamma _{3})\\ \lambda _{26}&=3 {\Omega ^*_7} (10 \Gamma _{1}-\Gamma _{3})-{\Omega ^*_4} (2 \lambda _{10}+\lambda _{7})\\ \lambda _{27}&=-\Gamma _{2} {\Omega ^*_4} (2 \Gamma _{1} \lambda _{8}+\lambda _{4})-9 \Gamma _{1} \lambda _{4} {\Omega ^*_5}\\ \lambda _{28}&=\lambda _{13}-9 {\Omega ^*_5} (\Gamma _{1} \lambda _{5}+\lambda _{4})-18 \Gamma _{1}^3 \Gamma _{3} {\Omega ^*_8}\\ \lambda _{29}&=\Gamma _{2} (\lambda _{17}-\lambda _{18})+\lambda _{15}-9 \lambda _{16}\\ \lambda _{30}&=\lambda _{24}+36 {\Omega ^*_7} (\Gamma _{3}-5 \Gamma _{1})\\ \lambda _{31}&=\lambda _{25}-9 \lambda _{7} {\Omega ^*_5}+9 (\lambda _{26}-120 {\Omega ^*_6})\\ \lambda _{32}&=135 {\Omega ^*_7}+90 {\Omega ^*_8}\\ \lambda _{33}&=16 \Gamma _{1} \lambda _{8} {\Omega _4}+3 \Gamma _{1}^2 \lambda _{5} {\Omega ^*_5}+30 \Gamma _{1} \lambda _{4} {\Omega ^*_5}\\ \lambda _{34}&=3 {\Omega ^*_5} (\Gamma _{1}^2 \lambda _{6}+10 \Gamma _{1} \lambda _{5}+9 \lambda _{4})\\ \lambda _{35}&=12 \Gamma _{1}^2 \Gamma _{3} {\Omega ^*_7}-15 \Gamma _{1}^4 {\Omega ^*_8}+36 \Gamma _{1}^3 \Gamma _{3} {\Omega ^*_8}\\ \lambda _{36}&=8 \Gamma _{1} \lambda _{9} {\Omega ^*_4}+6 \lambda _{5} {\Omega ^*_4}-24 \lambda _{8} {\Omega ^*_4}\\ \lambda _{37}&=3 {\Omega ^*_5} (\Gamma _{1}^2 \lambda _{7}+10 \Gamma _{1} \lambda _{6}+9 \lambda _{5})\\ \lambda _{38}&=12 (12 \Gamma _{3} {\Omega ^*_6}+5 \Gamma _{1}^2 {\Omega ^*_7}+2 \Gamma _{1} \Gamma _{3} {\Omega ^*_7})\\ \lambda _{39}&=\Gamma _{1} (3 \Gamma _{1} \Gamma _{3}-15 \Gamma _{1}^2)+9 (3 \Gamma _{1}^2 \Gamma _{3}-5 \Gamma _{1}^3)\\ \lambda _{40}&={\Omega ^*_4} (8 \Gamma _{1} \lambda _{10}+6 (\lambda _{6}-4 \lambda _{9}))\\ \lambda _{41}&=9 (3 \Gamma _{1} \Gamma _{3}-15 \Gamma _{1}^2)+\Gamma _{1} (\Gamma _{3}-15 \Gamma _{1})\\ \lambda _{42}&=6 {\Omega ^*_4} (\lambda _{7}-4 \lambda _{10})+3 \lambda _{41} {\Omega ^*_8}\\ \lambda _{43}&=5 (12 {\Omega ^*_6}+2 \Gamma _{1} {\Omega ^*_7})-3 \Gamma _{3} {\Omega ^*_7}\\ \lambda _{44}&=3 {\Omega ^*_5} (10 \Gamma _{1} \lambda _{7}+9 \lambda _{6})\\ \lambda _{45}&=9 (\Gamma _{3}-15 \Gamma _{1})-5 \Gamma _{1}\\ \lambda _{46}&=3 \Gamma _{1}^2 \lambda _{4} {\Omega ^*_5}\\ \lambda _{47}&=\lambda _{33}+12 \lambda _{4} {\Omega ^*_4}+6 \Gamma _{1}^4 \Gamma _{3} {\Omega ^*_8}\\ \lambda _{48}&=\lambda _{34}+2 (\lambda _{35}+\lambda _{36})\\ \lambda _{49}&=\lambda _{37}+2 (-\lambda _{38}+\lambda _{40}+3 \lambda _{39} {\Omega ^*_8})\\ \lambda _{50}&=2 (\lambda _{42}+12 \lambda _{43})+\lambda _{44}\\ \lambda _{51}&=27 \lambda _{7} {\Omega ^*_5}+2 (180 {\Omega ^*_7}+3 \lambda _{45} {\Omega ^*_8})\\ \lambda _{52}&=-270 {\Omega ^*_8} \end{aligned}$$

The values of various coefficients

$$\begin{aligned} \lambda _{53}&=6 \Gamma _{3} \lambda _{1} {\Omega ^*_4}-\Gamma _{2} {\Omega ^*_4} (-2 \Gamma _{1} \lambda _{9}+\lambda _{5}-2 \lambda _{8})\\ \lambda _{54}&=-24 \Gamma _{3} {\Omega ^*_6}+5 \Gamma _{1}^2 {\Omega ^*_7}-2 \Gamma _{1} \Gamma _{3} {\Omega ^*_7}\\ \lambda _{55}&=\Gamma _{2} {\Omega ^*_4} (2 \Gamma _{1} \lambda _{10}-\lambda _{6}+2 \lambda _{9})\\ \lambda _{56}&=3 \Gamma _{2} (\Gamma _{3} {\Omega ^*_7}-5 (24 {\Omega ^*_6}+2 \Gamma _{1} {\Omega ^*_7}))\\ \lambda _{57}&=\lambda _{56}+6 {\Omega ^*_4} (\Gamma _{3} \lambda _{3}-5 \lambda _{2})\\ \lambda _{58}&=-{\Omega ^*_4} \Gamma _{2} (\lambda _{4}-2 \Gamma _{1} \lambda _{8})\\ \lambda _{59}&=\lambda _{53}+3 \Gamma _{1}^2 \Gamma _{2} \Gamma _{3} {\Omega ^*_7}\\ \lambda _{60}&=-3 \Gamma _{2} \lambda _{54}+\lambda _{55}+6 {\Omega ^*_4} (\Gamma _{3} \lambda _{2}-5 \lambda _{1})\\ \lambda _{61}&=\lambda _{57}+\Gamma _{2} {\Omega ^*_4} (2 \lambda _{10}-\lambda _{7})\\ \lambda _{62}&=-30 \lambda _{3} {\Omega ^*_4}-15 \Gamma _{2} {\Omega ^*_7}\\ \lambda _{63}&=-18 \Gamma _{1} \Gamma _{3} \lambda _{1} {\Omega ^*_5}-3 \Gamma _{2} \lambda _{4} {\Omega ^*_5}-18 \Gamma _{1}^3 \Gamma _{2} \Gamma _{3} {\Omega ^*_8}\\ \lambda _{64}&=\Gamma _{1} (\Gamma _{2} \lambda _{6}+6 (\Gamma _{3} \lambda _{2}-5 \lambda _{1}))+\Gamma _{2} \lambda _{5}\\ \lambda _{65}&=4 \lambda _{9} {\Omega ^*_4}+6 \Gamma _{1} \Gamma _{3} {\Omega ^*_7}+27 \Gamma _{1}^2 \Gamma _{3} {\Omega ^*_8}\\ \lambda _{66}&=3 {\Omega ^*_5} (6 \Gamma _{3} \lambda _{1}+\lambda _{64})\\ \lambda _{67}&=4 \lambda _{10} {\Omega ^*_4}+9 {\Omega ^*_8} (3 \Gamma _{1} \Gamma _{3}-15 \Gamma _{1}^2)\\ \lambda _{68}&=2 \Gamma _{2} (\lambda _{67}+6 {\Omega ^*_7} (\Gamma _{3}-5 \Gamma _{1}))\\ \lambda _{69}&=\Gamma _{1} (\Gamma _{2} \lambda _{7}+6 (\Gamma _{3} \lambda _{3}-5 \lambda _{2}))\\ \lambda _{70}&=\Gamma _{2} \lambda _{6}+6 (\Gamma _{3} \lambda _{2}-5 \lambda _{1})+\lambda _{69}\\ \lambda _{71}&=2 \Gamma _{2} (9 {\Omega ^*_8} (\Gamma _{3}-15 \Gamma _{1})-30 {\Omega ^*_7})\\ \lambda _{72}&=-30 \Gamma _{1} \lambda _{3}+\Gamma _{2} \lambda _{7}+6 (\Gamma _{3} \lambda _{3}-5 \lambda _{2})\\ \lambda _{73}&=-3 \Gamma _{1} \Gamma _{2} \lambda _{4} {\Omega ^*_5}\\ \lambda _{74}&=\lambda _{63}-8 \Gamma _{2} \lambda _{8} {\Omega ^*_4}-3 \Gamma _{1} \Gamma _{2} \lambda _{5} {\Omega ^*_5}\\ \lambda _{75}&=-\lambda _{66}-2 \Gamma _{2} (\lambda _{65}-45 \Gamma _{1}^3 {\Omega ^*_8})\\ \lambda _{76}&=-\lambda _{68}-3 \lambda _{70} {\Omega ^*_5}\\ \lambda _{77}&=-\lambda _{71}-3 \lambda _{72} {\Omega ^*_5}\\ \lambda _{78}&=90 \lambda _{3} {\Omega ^*_5}+90 \Gamma _{2} {\Omega ^*_8} \end{aligned}$$

The values of various coefficients

$$\begin{aligned} \lambda _{79}&=\Gamma _{2} \lambda _{58}-\lambda _{73}\\ \lambda _{80}&=\Gamma _{2} \lambda _{59}+\lambda _{58}-\lambda _{74}\\ \lambda _{81}&=\Gamma _{2} \lambda _{60}+\lambda _{59}-\lambda _{75}\\ \lambda _{82}&=\Gamma _{2} \lambda _{61}+\lambda _{60}-\lambda _{76}\\ \lambda _{83}&=\Gamma _{2} \lambda _{62}+\lambda _{61}-\lambda _{77}\\ \lambda _{84}&=\lambda _{62}-\lambda _{78} \end{aligned}$$

The values of various coefficients

$$\begin{aligned} \lambda _{85}&=\Gamma _{1} \lambda _{79}\\ \lambda _{86}&=\Gamma _{1} \lambda _{80}-2 \Gamma _{3} \lambda _{58}-\lambda _{79}\\ \lambda _{87}&=\Gamma _{1} \lambda _{81}-2 \Gamma _{3} \lambda _{59}+4 \lambda _{58}-\lambda _{80}\\ \lambda _{88}&=\Gamma _{1} \lambda _{82}-2 \Gamma _{3} \lambda _{60}+4 \lambda _{59}-\lambda _{81}\\ \lambda _{89}&=\Gamma _{1} \lambda _{83}-2 \Gamma _{3} \lambda _{61}+4 \lambda _{60}-\lambda _{82}\\ \lambda _{90}&=\Gamma _{1} \lambda _{84}-2 \Gamma _{3} \lambda _{62}+4 \lambda _{61}-\lambda _{83}\\ \lambda _{91}&=4 \lambda _{62}-\lambda _{84} \end{aligned}$$
Table 7 Case-1: Data of periodic orbits around \((0,{\mathscr {L}})\) for \(\beta =0.1\) corresponding to Figs. 5 - 8
Table 8 Case-2: Data of periodic orbits around \((0,{\mathscr {L}})\) for \(\beta =1000\) corresponding to Figs. 912

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, O.P., Suraj, M.S., Aggarwal, R. et al. The study of periodic orbits in the spatial collinear restricted four-body problem with non-spherical primaries. Nonlinear Dyn 111, 4283–4311 (2023). https://doi.org/10.1007/s11071-022-08085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08085-z

Keywords

Navigation