Skip to main content
Log in

The \({\bar{\partial }}\)-dressing method applied to nonlinear defocusing Hirota equation with nonzero boundary conditions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the defocusing Hirota equation with nonzero boundary condition by using the \({\bar{\partial }}\)-dressing method. The \({\bar{\partial }}\)-problem with non-canonical normalization conditions is introduced. The Lax pair of the defocusing Hirota equation with nonzero boundary condition is derived from an asymptotic expansion method. The N-soliton solutions are constructed under the selected special spectral transformation matrix, and the dynamic behavior of soliton solutions isanalyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study

References

  1. Bao, W.: The nonlinear Schrödinger equation and applications in Bose–Einstein condensation and plasma physics. Dyn. Models Coarse., Coagul., Condens. Quant. 9, 141–239 (2007)

    MATH  Google Scholar 

  2. Busch, Th., Anglin, J.R.: Dark–bright solitons in inhomogeneous Bose–Einstein condensates. Phys. Rev. Lett. 87, 010401 (2001)

    Article  Google Scholar 

  3. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755–764 (2014)

    Article  Google Scholar 

  4. Kibler, B., Fatome, J., Finot, C., et al.: Observation of Kuznetsov–Ma soliton dynamics in optical fibre. Sci. Rep. 2, 463 (2012)

    Article  Google Scholar 

  5. Shukla, P.K., Eliasson, B.: Nonlinear aspects of quantum plasma physics. Phys.-Usp. 53, 51–76 (2010)

    Article  Google Scholar 

  6. Biondini, G., Kraus, D.K., Prinari, B.: The three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions. Commun. Math. Phys. 348, 475–533 (2016)

    Article  MATH  Google Scholar 

  7. Wang, X.B., Han, B.: Inverse scattering transform of an extended nonlinear Schrödinger equation with nonzero boundary conditions and its multisoliton solutions. J. Math. Anal. Appl. 487, 123968 (2020)

    Article  MATH  Google Scholar 

  8. Zhao, Y., Fan, E.G.: Inverse Scattering transformation for the Fokas–Lenells equation with nonzero boundary conditions. J. Nonlinear Math. Phys. 28, 38–52 (2021)

    Article  MATH  Google Scholar 

  9. Zhang, G.Q., Yan, Z.Y.: Focusing and defocusing mKdV equations with nonzero boundary conditions: inverse scattering transforms and soliton interactions. Physica D 410, 132521 (2020)

    Article  MATH  Google Scholar 

  10. Prinari, B., Demontis, F., Li, S., Horikis, T.P.: Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions. Physica D 368, 22–49 (2018)

    Article  MATH  Google Scholar 

  11. Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 59, 011501 (2018)

    Article  MATH  Google Scholar 

  12. Zhang, G.Q., Chen, S.Y., Yan, Z.Y.: Focusing and defocusing Hirota equations with non-zero boundary conditions: inverse scattering transforms and soliton solutions. Commun. Nonlin. Sci. Numer. Simul. 80, 104927 (2020)

    Article  MATH  Google Scholar 

  13. Yang, J.J., Tian, S.F.: Riemann–Hilbert problem for the modified Landau–Lifshitz equation with nonzero boundary conditions. Theor. Math. Phys. 205, 1611–1637 (2020)

    Article  MATH  Google Scholar 

  14. Zhang, B., Fan, E.G.: Riemann-Hilbert approach for a Schrödinger-type equation with nonzero boundary conditions. Mod. Phys. Lett. B 35, 2150208 (2021)

    Article  Google Scholar 

  15. Yang, Y.L., Fan, E.G.: Riemann-Hilbert approach to the modified nonlinear Schrödinger equation with non-vanishing asymptotic boundary conditions. Physica D 417, 132811 (2021)

    Article  MATH  Google Scholar 

  16. Boutet de Monvel, A., Karpenko, I., Shepelsky, D.: A Riemann–Hilbert approach to the modified Camassa–Holm equation with nonzero boundary conditions. J. Math. Phys. 61, 031504 (2020)

  17. Matsuno, Y.: The multi-component modified nonlinear Schrödinger system with nonzero boundary conditions. Phys. Scr. 94, 115216 (2019)

    Article  Google Scholar 

  18. Luo, J.H., Fan, E.G.: Dbar-dressing method for the Gerdjikov–Ivanov equation with nonzero boundary conditions. Appl. Math. Lett. 120, 107297 (2021)

    Article  MATH  Google Scholar 

  19. Zhu, J.Y., Jiang, X.L., Wang, X.R.: Dbar dressing method to nonlinear Schrödinger equation with nonzero boundary conditions (2021). arXiv:2011.09028

  20. Zakharov. V.E., Shabat. A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 8, 226–235 (1974)

  21. Beals, R., Coifman, R.R.: Scattering, transformations spectrales et équations d’évolution non linéaire II. Séminaire Goulaouic–Schwartz. Exposé 21, 1-8 (1980–1981)

  22. Beals, R., Coifman, R.R.: The D-bar approach to inverse scattering and nonlinear evolutions. Physica D 18, 242–249 (1986)

    Article  MATH  Google Scholar 

  23. Bogdanov, L.V., Manakov, S.V.: The non-local delta problem and \((2+1)\)-dimensional soliton equations. J. Phys. A: Math. Gen. 21, L537–L544 (1988)

    Article  MATH  Google Scholar 

  24. Beals, R., Coifman, R.R.: Linear spectral problems, non-linear equations and the dbar-method. Inverse Probl. 5, 87–130 (1989)

    Article  MATH  Google Scholar 

  25. Fokas, S.A., Zakharov, E.V.: The dressing method and nonlocal Riemann–Hilbert problems. J. Nonlinear Sci. 2, 109–134 (1992)

    Article  MATH  Google Scholar 

  26. Kuang, Y.H., Zhu, J.Y.: The higher-order soliton solutions for the coupled Sasa–Satsuma system via the dbar-dressing method. Appl. Math. Lett. 66, 47–53 (2017)

    Article  MATH  Google Scholar 

  27. Geng, X.G., Zhu, J.Y.: A hierarchy of coupled evolution equations with self-consistent sources and the dressing method. J. Phys. A: Math. Theor. 46, 035204 (2013)

    Article  MATH  Google Scholar 

  28. Zhu, J.Y., Zhou, D.W., Yang. J.J.: A new solution to the Hirota–Satsuma coupled KdV equations by the dressing method. Commun. Theor. Phys. 60, 266–268 (2013)

  29. Zhu, J.Y., Zhou, D.W., Geng, X.G.: Dbar-problem and Cauchy matrix for the mKdV equation with self-consistent sources. Phys. Scr. 89, 065201 (2014)

    Article  Google Scholar 

  30. Kuang, Y.H., Zhu, J.Y.: A three-wave interaction model with self-consistent sources: the -dressing method and solutions. J. Math. Anal. Appl. 426, 783–793 (2015)

    Article  MATH  Google Scholar 

  31. Zhu, J.Y., Kuang, Y.H.: CUSP solitons to the long-short waves equation and the dressing method. Rep. Math. Phys. 75, 199–211 (2015)

  32. Luo, J.H., Fan, E.G.: Dbar-dressing method for the coupled Gerdjikov–Ivanov equation. Appl. Math. Lett. 110, 106589 (2020)

    Article  MATH  Google Scholar 

  33. Luo, J.H., Fan, E.G.: Dbar-dressing method for the Gerdjikov–Ivanov equation with nonzero boundary conditions. Appl. Math. Lett. 120, 107297 (2021)

    Article  MATH  Google Scholar 

  34. Wang, X.R., Zhu, J.Y.: Dbar-approach to coupled nonlocal NLS equation and general nonlocal reduction. Stud. Appl. Math. 148, 433–456 (2022)

    Article  Google Scholar 

  35. Yao, Y.Q., Huang, Y.H., Fan, E.G.: The dbar-dressing method and Cauchy matrix for the defocusing matrix NLS system. Appl. Math. Lett. 117, 107143 (2021)

    Article  MATH  Google Scholar 

  36. Zhu, J.Y., Geng, X.G.: The AB equations and the dbar-dressing method in semi-characteristic coordinates. Math. Phys. Anal. Geom. 17, 49–65 (2013)

    Article  MATH  Google Scholar 

  37. Huang, Y.H., Di, J.J., Yao, Y.Q.: \({\bar{\partial }}\)-Dressing method for a generalized Hirota equation. Int. J. Mod. Phys. B (2022). https://doi.org/10.1142/S0217979222501119

  38. Peregrine, H.D.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16 (1983)

    Article  MATH  Google Scholar 

  39. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190 (1968)

    Article  Google Scholar 

  40. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  Google Scholar 

  41. Mahalingam, A., Porsezian, K.: Propagation of dark solitons with higher-order effects in optical fibers. Phys. Rev. E 64, 046608 (2001)

    Article  Google Scholar 

Download references

Funding

The funding was provided by the National Natural Science Foundation of China (Grant No. 12171475), Beijing Natural Science Foundation (No. Z200001) and the Fundamental Research Funds of the Central Universities with the (Grant No. 2020MS043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehui Huang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

Derivation of the temporal linear spectrum problem of the defocusing Hirota equation with NZBCs.

As \(z\rightarrow \infty \), from (24), we have

$$\begin{aligned}&{{\psi _{t}}}=\frac{i}{2}\left( \beta \sigma _{3}z^{3}-(\alpha \sigma _{3}-\beta a_{1}\sigma _{3})z^{2}+(\beta a_{2}\sigma _{3} \right. \nonumber \\&\qquad -\alpha a_{1} \sigma _{3}+3\beta q_{0}^{2}\sigma _{3})z+(\beta a_{3}\sigma _{3}+3\beta q_{0}^{2}a_{1}\sigma _{3}\nonumber \\&\qquad \left. -\alpha a_{2}\sigma _{3})+O\left( \frac{1}{z}\right) \right) e^{i\theta (z)\sigma _{3}},\end{aligned}$$
(65)
$$\begin{aligned}&{-4i\beta } k^{3}\sigma _{3}\psi = \frac{i}{2}\left( \beta \sigma _{3} z^{3}+\beta \sigma _{3} a_{1}z^{2}\right. \nonumber \\&\quad \left. +(\beta \sigma _{3} a_{2}+3\beta \sigma _{3}q_{0}^{2})z \right. \nonumber \\&\qquad \left. +\,\beta \sigma _{3} a_{3}+3\beta \sigma _{3} q_{0}^{2} a_{1}+O\left( \frac{1}{z}\right) \right) e^{i\theta (z)\sigma _{3}}, \end{aligned}$$
(66)
$$\begin{aligned}&-2i\alpha k^{2}\sigma _{3}\psi +4\beta k^{2}Q\psi \nonumber \\&\quad =\frac{1}{2}\left( (-i\alpha \sigma _{3}+2\beta Q)z^{2}\right. \nonumber \\&\qquad -\,(i\alpha \sigma _{3}a_{1} -2\beta Qa_{1})z+2i\alpha \sigma _{3} q_{0}^{2}-i\alpha \sigma _{3}a_{2}\nonumber \\&\qquad \left. +\,2\beta Qa_{2}+4\beta q_{0}^{2}Q+O\left( \frac{1}{z}\right) \right) e^{i\theta (z)\sigma _{3}},\end{aligned}$$
(67)
$$\begin{aligned}&k(2\alpha Q-2i\beta (Q_{x}+Q^{2})\sigma _{3})\psi \nonumber \\&\quad = \left( (i\beta Q_{x}\sigma _{3}\right. \nonumber \\&\qquad +\,i\beta Q^{2}\sigma _{3}-\alpha Q)z-\alpha Qa_{1}+i\beta (Q_{x}+Q^{2})\nonumber \\&\qquad \left. \sigma _{3}a_{1}+O\left( \frac{1}{z}\right) \right) e^{i\theta (z)\sigma _{3}},\end{aligned}$$
(68)
$$\begin{aligned}&(-i\alpha (Q_{x}+Q^{2}- q_{0}^{2})\sigma _{3}+\beta (Q_{x}Q\nonumber \\&\qquad -QQ_{x}+{2}Q^{3}-Q_{xx}))\psi \nonumber \\&\quad =\left( -i\alpha (Q_{x}+Q^{2}- q_{0}^{2})\sigma _{3}\right. \nonumber \\&\qquad \left. +\,\beta (Q_{x}Q-QQ_{x}+2Q^{3}-Q_{xx})\right. \nonumber \\&\qquad \left. +O\left( \frac{1}{z}\right) \right) e^{i\theta (z)\sigma _{3}}. \end{aligned}$$
(69)

Further we obtain

$$\begin{aligned}&(-4i\beta k^{3}\sigma _{3}-2i\alpha k^{2}\sigma _{3}+4\beta k^{2}Q+(2\alpha Q-2i\beta (Q_{x}\nonumber \\&\qquad +Q^{2})\sigma _{3})k-i\alpha (Q_{x}+Q^{2}- q_{0}^{2})\sigma _{3}\nonumber \\&\qquad +\beta (Q_{x}Q-QQ_{x}+2Q^{3}-Q_{xx}))\psi \nonumber \\&\quad =\left( \frac{i}{2}\beta \sigma _{3} z^{3}+\left( \frac{i}{2}\beta \sigma _{3}a_{1}-\frac{i}{2}\alpha \sigma _{3}+\beta Q\right) z^{2}\right. \nonumber \\&\qquad +\left( \frac{i}{2}\beta \sigma _{3}a_{2}+\frac{3}{2}i\beta q_{0}^{2}\sigma _{3}-\frac{i}{2}\alpha \sigma _{3}a_{1}+\beta Qa_{1}+i\beta Q_{x}\sigma _{3}\right. \nonumber \\&\qquad \left. +i\beta Q^{2}\sigma _{3}-\alpha Q\right) z+\frac{i}{2}\beta \sigma _{3} a_{3}+\frac{3}{2}i\beta q_{0}^{2}\sigma _{3}a_{1}-i\alpha q_{0}^{2}\sigma _{3}\nonumber \\&\qquad -\frac{i}{2}\alpha \sigma _{3}a_{2}+\beta Qa_{2}+2\beta q_{0}^{2}Q-\alpha Qa_{1}+i\beta (Q_{x}+Q^{2})\nonumber \\&\qquad \sigma _{3}a_{1} -i\alpha (Q_{x}+Q^{2}- q_{0}^{2})\sigma _{3}+\beta (Q_{x}Q-QQ_{x}\nonumber \\&\qquad \left. +2Q^{3}-Q_{xx})\right) e^{i\theta (z)\sigma _{3}}. \end{aligned}$$
(70)

From (44), the following relation can be calculated.

$$\begin{aligned} {\frac{i}{2}\beta \sigma _{3}a_{1}-\frac{i}{2}\alpha \sigma _{3}+\beta Q=\frac{i}{2}(\beta a_{1}\sigma _{3}-\alpha \sigma _{3})} \end{aligned}$$
(71)

Using (45) and considering the relationship between Q and \(a_{1}\), we get

$$\begin{aligned}&{\frac{i}{2}\beta \sigma _{3}a_{2}+\frac{3}{2}i\beta q_{0}^{2}\sigma _{3}-\frac{i}{2}\alpha \sigma _{3}a_{1}+\beta Qa_{1}+i\beta Q_{x}\sigma _{3}}\nonumber \\&\quad {+i\beta Q^{2}\sigma _{3}-\alpha Q =\frac{i}{2}\beta a_{2}\sigma _{3}+\frac{3}{2}i\beta q_{0}^{2}\sigma _{3}-\frac{i}{2}\alpha a_{1}\sigma _{3}.} \end{aligned}$$
(72)

Using (46)–(48), considering the relationship between Q and \(a_{1}\), we get

$$\begin{aligned}&{\frac{i}{2}}{\beta \sigma _{3} a_{3}+\frac{3}{2}i\beta q_{0}^{2}\sigma _{3}a_{1}-i\alpha q_{0}^{2}\sigma _{3}-\frac{i}{2}\alpha \sigma _{3}a_{2}+\beta Qa_{2}}\nonumber \\&\qquad +\,2\beta q_{0}^{2}Q-\alpha Qa_{1}+i\beta (Q_{x}+Q^{2})\sigma _{3}a_{1}-i\alpha (Q_{x}\nonumber \\&\qquad +\,Q^{2}- q_{0}^{2})\sigma _{3}+\beta (Q_{x}Q-QQ_{x}+2Q^{3}-Q_{xx})\nonumber \\&\quad =\frac{i}{2}\beta a_{3}\sigma _{3}+\frac{3}{2}i\beta q_{0}^{2}a_{1}\sigma _{3}-\frac{i}{2}\alpha a_{2}\sigma _{3}. \end{aligned}$$
(73)

The formula (70) leads to

$$\begin{aligned}&(-4i\beta k^{3}\sigma _{3}-2i\alpha k^{2}\sigma _{3}+4\beta k^{2}Q+(2\alpha Q-2i\beta (Q_{x}\nonumber \\&\qquad +\,Q^{2})\sigma _{3})k-i\alpha (Q_{x}+Q^{2}- q_{0}^{2})\sigma _{3}\nonumber \\&\qquad +\beta (Q_{x}Q-QQ_{x}+2Q^{3}-Q{xx}))\psi \nonumber \\&\quad =\frac{i}{2}\left( \beta \sigma _{3}z^{3}-(\alpha \sigma _{3}-\beta a_{1}\sigma _{3})z^{2}\right. \nonumber \\&\qquad +\,(\beta a_{2}\sigma _{3}-\alpha a_{1}\sigma _{3}+3\beta q_{0}^{2}\sigma _{3})z \nonumber \\&\qquad +(\beta a_{3}\sigma _{3}+3\beta q_{0}^{2}a_{1}\sigma _{3}\nonumber \\&\qquad \left. -\,\alpha a_{2}\sigma _{3})+O\left( \frac{1}{z}\right) \right) e^{i\theta (z)\sigma _{3}}. \end{aligned}$$
(74)

Equations (65) and (74) imply the Laurent series of \(\psi _{t}\) and \((-4i\beta k^{3}\sigma _{3}-2i\alpha k^{2}\sigma _{3}+4\beta k^{2}Q+(2\alpha Q-2i\beta (\) \(Q_{x}+\) \(Q^{2})\sigma _{3})k-i\alpha (Q_{x}+Q^{2}- q_{0}^{2})\sigma _{3}+\beta (Q_{x}Q-QQ_{x}+2Q^{3}-Q_{xx}))\psi \) at \(z\rightarrow \infty \) share the same principal part. Using (7) and (25) and considering the relationship between \(a_{l}\) and \(b_{m}\), we find

$$\begin{aligned} \psi _{t}&=\left( -\frac{i}{2}\beta q_{0}^{6}b_{-1}\sigma _{3}z^{-4}+\left( \frac{i}{2}\alpha q_{0}^{4}b_{-1}\sigma _{3}-\frac{i}{2}\beta q_{0}^{6}b_{0}\sigma _{3}\right) z^{-3}\right. \nonumber \\&+\left( \frac{i}{2}\alpha q_{0}^{4}b_{0}\sigma _{3}-\frac{3}{2}i\beta q_{0}^{4}b_{-1}\sigma _{3}-\frac{i}{2}\beta q_{0}^{6}b_{1}\sigma _{3}\right) z^{-2}+\left( \frac{i}{2}\alpha q_{0}^{4}\right. \nonumber \\&\left. \left. b_{1}\sigma _{3}-\frac{i}{2}\beta q_{0}^{6}b_{2}\sigma _{3}-\frac{3}{2}i\beta q_{0}^{4}b_{0}\sigma _{3}\right) z^{-1}+O(1)\right) e^{i\theta (z)\sigma _{3}}, \end{aligned}$$
(75)

and

$$\begin{aligned}&(-4i\beta k^{3}\sigma _{3}-2i\alpha k^{2}\sigma _{3}+4\beta k^{2}Q+(2\alpha Q\nonumber \\&\qquad -\,2i\beta (Q_{x}+Q^{2})\sigma _{3})k-i\alpha (Q_{x}+Q^{2}- q_{0}^{2})\sigma _{3}\nonumber \\&\qquad +\beta (Q_{x}Q-QQ_{x}+2Q^{3}-Q_{xx}))\psi \nonumber \\&\quad =\left( -\frac{i}{2}\beta q_{0}^{6}b_{-1}\sigma _{3}z^{-4} \right. \nonumber \\&\qquad +\,\left( \frac{i}{2}\alpha q_{0}^{4}b_{-1}\sigma _{3}-\frac{i}{2}\beta q_{0}^{6}b_{0}\sigma _{3}\right) z^{-3}+\left( \frac{i}{2}\alpha q_{0}^{4}b_{0}\sigma _{3}\right. \nonumber \\&\qquad \left. -\,\frac{3}{2}i\beta q_{0}^{4}b_{-1}\sigma _{3}-\frac{i}{2}\beta q_{0}^{6}b_{1}\sigma _{3}\right) z^{-2}+\left( \frac{i}{2}\alpha q_{0}^{4}b_{1}\sigma _{3}\right. \nonumber \\&\qquad \left. \left. -\,\frac{i}{2}\beta q_{0}^{6}b_{2}\sigma _{3}-\frac{3}{2}i\beta q_{0}^{4}b_{0}\sigma _{3}\right) z^{-1}+O(1)\right) e^{i\theta (z)\sigma _{3}}, \end{aligned}$$
(76)

which imply that the Laurent series of \(\psi _{t}\) and \((-4i\beta k^{3}\sigma _{3}-2i\alpha k^{2}\sigma _{3}+4\beta k^{2}Q+(2\alpha Q-2i\beta (Q_{x}+Q^{2})\sigma _{3})k-i\alpha (Q_{x}+Q^{2}- q_{0}^{2})\sigma _{3}+\beta (Q_{x}Q-QQ_{x}+2Q^{3}-Q_{xx}))\psi \) at \(z\rightarrow 0\) share the same principal part. From (74) and (76), we find that

$$\begin{aligned} {\mathcal {N}}(\psi _{t})&={\mathcal {N}}((-4i\beta k^{3}\sigma _{3} -2i\alpha k^{2}\sigma _{3}+4\beta k^{2}Q+(2\alpha Q\nonumber \\&\quad -2i\beta (Q_{x}+Q^{2})\sigma _{3})k-i\alpha (Q_{x}+Q^{2}- q_{0}^{2})\sigma _{3}\nonumber \\&\quad +\beta (Q_{x}Q-QQ_{x}+2Q^{3}-Q_{xx}))\psi ). \end{aligned}$$
(77)

According to Lemma 1, the temporal linear spectral problem of the defocusing Hirota equation with NZBCs can be obtained

$$\begin{aligned} {\psi _{t}}&=(-4i\beta k^{3}\sigma _{3}-2i\alpha k^{2}\sigma _{3}+4\beta k^{2}Q+(2\alpha Q\nonumber \\&\quad -2i\beta (Q_{x}+Q^{2})\sigma _{3})k-i\alpha (Q_{x}+Q^{2}- q_{0}^{2})\sigma _{3}\nonumber \\&\quad +\beta (Q_{x}Q-QQ_{x}+2Q^{3}-Q_{xx}))\psi . \end{aligned}$$
(78)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Di, J. & Yao, Y. The \({\bar{\partial }}\)-dressing method applied to nonlinear defocusing Hirota equation with nonzero boundary conditions. Nonlinear Dyn 111, 3689–3700 (2023). https://doi.org/10.1007/s11071-022-08004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08004-2

Keywords

Mathematics Subject Classification

Navigation