Skip to main content
Log in

The lump, lump off and rogue wave solutions of a (\(2+1\))-dimensional breaking soliton equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, the (\(2+1\))-dimensional breaking soliton equation is investigated, which can be used to describe certain properties of exact solutions. We construct the lump soliton and more general lump soliton with more arbitrary parameters via using Hirota bilinear method. Furthermore, the lump off solution is presented by considering a stripe soliton solution generated completely with the lump solution. The lump part is cut by soliton part before and after a special time. Finally, according to a pair of stripe solitons, we construct the special rogue waves by cutting the lump soliton. Our results show that the occurrence of rogue wave time and location can be captured by tracking the motion path of the lump solution and confirming when and where it collides with visible solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Ablowitz, M.J., Clarkson, P.A.: Soliton Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  3. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    MATH  Google Scholar 

  4. Bluman, G.W., Kumei, V.: Symmetries and Differential Equation. Sprinder, New York (1989)

    MATH  Google Scholar 

  5. Manakov, S.V., Zakharov, V.E., Bordag, L.A.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)

    Google Scholar 

  6. Gilson, C.R., Nimmo, J.J.C.: Lump Solutions to the BKP Equation Nonlinear Evolution Equations and Dynamical Systems, pp. 94–98. Springer, Berlin (1991)

    Google Scholar 

  7. Ma, H.C., Deng, A.P.: Lump Solution of (2+1)-dimensional Boussinesq Equation. Commun. Theor. Phys. 65(5), 546–552 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Minzoni, A.A., Smyth, N.F.: Evolution of lump solutions for the KP equation. Wave Motion 24(3), 291–305 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Ma, W.X., Zhou, Y.: Lump solutions to particle differential equations via Hirota bilinear forms. J. Differ. Equ. 264(4), 2633–2659 (2018)

    MATH  Google Scholar 

  10. Yang, J.Y., Ma, W.X., Qin, Z.Y.: Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal. Math. Phys. 8(3), 427–436 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Zhao, H.Q., Ma, W.X.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74, 1399–1405 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Ma, W.X., Huang, T., Yi, Z.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82(6), 5468–5478 (2010)

    Google Scholar 

  13. Chen, S.T., Ma, W.X.: Lump solutions of a generalized Calogero–Bogoyavlenskii–Schiff equation. Comput. Math. Appl. 76, 1680–1685 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Zhang, J.B., Ma, W.X.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74, 591–596 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Ma, W.X.: Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs. J. Geom. Phys. 133, 10–16 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Chen, S.T., Ma, W.X.: Lump solutions to a generalized Bogoyavlensky–Konopelchenko equation. Front. Math. China 13(3), 525–534 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Ma, W.X.: Lump and interaction solutions of linear PDEs in (3+1)-dimensions. East Asian J. Appl. Math. 300318 (2018)

  18. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A. 379, 1975–1978 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Yang, J.Y., Ma, W.X.: Abundant interaction solutions of the KP equation. Nonlinear Dyn. 89, 1539–1544 (2017)

    MathSciNet  Google Scholar 

  20. Jia, M., Lou, S.Y.: Lump, Lumpoff and predictable instsanton/rogue wave solutions to KP equation. arXiv:1803.01730

  21. Peng, W.Q., Tian, S.F., Zhang, T.T.: Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev–Petviashvili equation. Phys. Lett. A. 382, 2701–2708 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Feng, L.L., Zhang, T.T.: Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation. Appl. Math. Lett. 78, 133–140 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Wang, X.B., Zhang, T.T., Dong, M.J.: Dynamics of the breathers and rogue waves in the higher-order nonlinear Schrödinger equation. Appl. Math. Lett. 86, 298–304 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Dong, M.J., Tian, S.F., Yan, X.W., Zou, L.: Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation. Comput. Math. Appl. 7(5), 957–964 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Peng, W.Q., Tian, S.F., Zhang, T.T.: On the breather waves, rogue waves and solitary waves to a generalized (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Filomat 32(14), 4959–4969 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Qin, C.Y., Tian, S.F., Wang, X.B., Zhang, T.T., Li, J.: Rogue waves, bright-dark solitons and traveling wave solutions of the (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Comput. Math. Appl. 75, 4221–4231 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Wang, X.B., Tian, S.F., Zhang, T.T.: Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation. Proc. Am. Math. Soc. 146, 3353–3365 (2018)

    MATH  Google Scholar 

  28. Zhang, R.F., et al.: New periodic wave, cross-kink wave and the interaction phenomenon for the Jimbo–Miwa-like equation. Comput. Math. Appl. 78(3), 754–764 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Wazwaz, A.M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106(1), 891–897 (2021)

    Google Scholar 

  30. Konopelchenko, B.G.: Solitons in Multidimensions: Inverse Spectral Transform Method. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  31. Bogoyavlenskii, O.I.: Breaking solitons in 2+1-dimensional integrable equations. Uspekhi Mat. Nauk 45(4), 17–77 (1990)

    MathSciNet  Google Scholar 

  32. Radha, R., Lakshmanan, M.: Dromion like structures in the (2+1)-dimensional breaking soliton equation. Phys. Lett. A 197, 7 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Ikeda, T., Takasaki, K.: Toroidal Lie algebras and Bogoyavlensky’s (2+1)-dimensional equation. Int. Math. Res. Notices 7, 329 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Kovalyov, M.: Nonlinear interference and the Korteweg-de Vries equation. Appl. Math. Lett. 9(5), 89–92 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Kovalyov, M.: Modulating properties of harmonic breather solutions of KdV. J. Phys. A Math. Gen. 31, 5117–5128 (1998)

    MathSciNet  MATH  Google Scholar 

  36. Kovalyov, M.: Basic motions of the Korteweg-de Vries equation. Nonlinear Anal. TMA 31(5/6), 599–619 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Kovalyov, M.: Uncertainty principle for the nonlinear waves of the Korteweg-de Vries equation. Chaos Solitons Fractals 32, 431–444 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Kovalyov, M.: Some properties of slowly decaying oscillatory solutions of KP. Chaos Solitons Fractals 25, 979–989 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Zhang, Y., Song, Y., Cheng, L., Ge, J.Y., Wei, W.W.: Exact solutions and Painlevé analysis of a new (2+1)-dimensional generalized KdV equation. Nonlinear Dyn. 68(4), 445–458 (2012)

    MATH  Google Scholar 

  40. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095 (1967)

    MATH  Google Scholar 

  41. Chai, J., Tian, B., Sun, W.R., Xie, X.Y.: Solitons and dynamic analysis for a (2+1)-dimensional breaking soliton equation. Superlattice Microst. 101, 584–591 (2017)

    Google Scholar 

  42. Kim, H., Choi, J.H.: Exact solutions of a diffusive predator–prey system by the generalized Riccati equation. Bull. Malays. Math. Sci. Soc. 39, 1125–1143 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Wang, G.W., Xu, T.Z., Liu, X.Q.: New explicit solutions of the fifth-order KdV equation with variable coefficients. Bull. Malays. Math. Sci. Soc. 37(3), 769–778 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Gurefe, Y., Misirli, E., Pandir, Y., Sonmezoglu, A., Ekici, M.: New exact solutions of the Davey–Stewartson equation with power-law nonlinearity. Bull. Malays. Math. Sci. Soc. 38, 1223–1234 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Wazwaz, A.M., Kaur, L.: Complex simplified Hirota’s forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV–Sine–Gordon equation. Nonlinear Dyn. 95, 2209–2215 (2019)

    MATH  Google Scholar 

  46. Wazwaz, A.M., Xu, G.Q.: Kadomtsev–Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711–3716 (2020)

    Google Scholar 

  47. Yu, F., Li, L.: Dynamics of some novel breather solutions and rogue waves for the PT-symmetric nonlocal soliton equations. Nonlinear Dyn. 95, 1867–1877 (2019)

    MATH  Google Scholar 

  48. Li, W.T., Li, B.: Soliton solutions of weakly bound states for higher-order Ito equation. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07662-6

    Article  Google Scholar 

  49. Fang, Y., Wu, G.Z., Wang, Y.Y., et al.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105, 603–616 (2021)

    Google Scholar 

  50. Bi, K., Hao, H.Q., Zhang, J.W., et al.: Soliton, breather-like and dark-soliton-breather-like solutions for the coupled long-wave-short-wave system. Nonlinear Dyn. 108, 543–554 (2022)

    Google Scholar 

  51. Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262(1), 506–558 (2017)

    MATH  Google Scholar 

  52. Tian, S.F.: Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on the half-line via the Fokas method. J. Phys. A Math. Theor. 50(39), 395204 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Yan, X.W., Tian, S.F., Dong, M.J., Zhou, L., Zhang, T.T.: Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation. Comput. Math. Appl. 76(1), 179–186 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Tian, S.F.: Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Commun. Pure Appl. Anal. 17(3), 923–957 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Peng, W.Q., Tian, S.F., Zhang, T.T.: Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation. EPL 123(5), 50005 (2018)

    MathSciNet  Google Scholar 

  56. Tian, S.F.: Asymptotic behavior of a weakly dissipative modified two-component Dullin–Gottwald–Holm system. Appl. Math. Lett. 83, 65–72 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Tian, S.F.: Infinite propagation speed of a weakly dissipative modified two component Dullin–Gottwald–Holm system. Appl. Math. Lett. 89, 1–7 (2019)

    MathSciNet  MATH  Google Scholar 

  58. Qin, C.Y., Tian, S.F., Zou, L., Zhang, T.T.: Lie symmetry analysis, conservation laws and exact solutions of fourth-order time fractional Burgers equation. J. Appl. Anal. Comput. 8(6), 1727–1746 (2018)

    MathSciNet  MATH  Google Scholar 

  59. Tian, S.F.: The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc. R. Soc. A 472(2195), 20160588 (2018)

    MATH  Google Scholar 

  60. Yan, X.W., Tian, S.F., Dong, M.J., Wang, X.B., Zhang, T.T.: Nonlocal symmetries, conservation laws and interaction solutions of the generalised dispersive modified Benjamin– Bona–Mahony equation. Z. Naturforsch. A 73(5), 399–405 (2018)

    Google Scholar 

  61. Tian, S.F., Zhang, T.T.: Long-time asymptotic behavior for the Gerdjikov–Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition. Proc. Am. Math. Soc. 146(4), 1713–1729 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Qin, C.Y., Tian, S.F., Zou, L., Ma, W.X.: Solitary wave and quasi-periodic wave solutions to a (3+1)-dimensional generalized Calogero–Bogoyavlenskii–Schiff equation. Adv. Appl. Math. Mech. 10(4), 948–977 (2018)

    MathSciNet  MATH  Google Scholar 

  63. Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–277 (1834)

    MathSciNet  MATH  Google Scholar 

  64. Tian, S.F., Zhang, H.Q.: On the integrability of a generalized variable-coefficient Kadomtsev–Petviashvili equation. J. Phys. A Math. Theor. 45, 055203 (2012)

    MathSciNet  MATH  Google Scholar 

  65. Tian, S.F., Zhang, H.Q.: On the integrability of a generalized variable-coefficient forced Korteweg-de Vries equation in fluids. Stud. Appl. Math. 132(3), 212–246 (2014)

    MathSciNet  MATH  Google Scholar 

  66. Zhang, R.F., Sudao, B.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dynamics 95(4), 3041–3048 (2019)

    MATH  Google Scholar 

  67. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation. Nonlinear Dyn. 103(1), 1071–1079 (2021)

    Google Scholar 

  68. Qiao, J.M., Zhang, R.F., Yue, R.X., Rezazadeh, H., Seadawy, A.R.: Three types of periodic solutions of new (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation via bilinear neural network method. Math. Methods Appl. Sci. 45(9), 5612–5621 (2022)

    MathSciNet  Google Scholar 

  69. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Physica Scripta 96(2), 025224 (2020)

    Google Scholar 

  70. Wazwaz, A.M., Wedad, A., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

  71. Zhang, R.F., et al.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

  72. Zhang, R.F., et al.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fractals 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  73. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108(1), 521–531 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the referees for their valuable comments and suggestions. This work is supported by the National Natural Science Foundation of China (12001377, 52071056, 52101360, 51979032), State Key Laboratory of Coastal and Offshore Engineering (LP2104), the China Postdoctoral Science Foundation (2021M701837), the Fundamental Research Funds for the Central Universities (DUT21ZD402) and the Liaoning Revitalization Talents Program (XLYC2007109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yu, ZB. & Zou, L. The lump, lump off and rogue wave solutions of a (\(2+1\))-dimensional breaking soliton equation. Nonlinear Dyn 111, 591–602 (2023). https://doi.org/10.1007/s11071-022-07823-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07823-7

Keywords

Mathematics Subject Classification

Navigation