Skip to main content
Log in

Multi-soliton solutions for integrable (\(3+1\))-dimensional modified seventh-order Ito and seventh-order Ito equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work is dedicated to a (\(3+1\))-dimensional modified Ito equation of seventh order. The standard integrable (\(3+1\))-dimensional Ito equation of seventh order is established as well. Painlevé analysis is used to test the complete integrability of the extended models. Three branches of resonance points are derived for each model. Multi-soliton solutions, multi-singular soliton solutions, and variety of other solutions are successfully prevailed by execution of simplified Hirota’s method and distinct ansatz techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References

  1. Ito, M.: An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders. J. Phys. Soc. Jpn. 49, 771–778 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wazwaz, A.M.: Integrable (3 + 1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07517-0

    Article  Google Scholar 

  3. Wazwaz, A.M.: Partial Differential Equation and Solitary Waves Theory. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  4. Peng, L., Zuliang, P.: New periodic solutions of Ito’s 5th-order equation and Ito’s 7th-order mKdV equation. Appl. Math. J. Chin. Univ. Ser. B 19(1), 44–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hirota, R., Ito, M.: Resonance of solitons in one dimension. J. Phys. Soc. Jpn. 52, 744–748 (1983)

    Article  MathSciNet  Google Scholar 

  6. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  8. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Adem, A.R., Khalique, C.M.: New exact solutions and conservation laws of a coupled Kadomtsev–Petviashvili system. Comput. Fluids 81, 10–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wazwaz, A.M.: Multiple kink solutions for the (2 + 1)-dimensional Sharma–Tasso–Olver and the Sharma–Tasso–Olver–Burgers equations. J. Appl. Nonlinear Dyn. 2, 95–102 (2013)

    Article  MATH  Google Scholar 

  11. Su, T.: Explicit solutions for a modified (2 + 1)-dimensional coupled Burgers equation by using Darboux transformation. Appl. Math. Lett. 69, 15–21 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mihalache, D.: Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature. Rom. Rep. Phys. 69(403), 1–28 (2017)

    Google Scholar 

  13. Mihalache, D.: Localized structures in optical and matter-wave media: a selection of recent studies. Rom. Rep. Phys. 73(403), 1–28 (2021)

    Google Scholar 

  14. Xing, Q., Wu, Z., Mihalache, D., He, Y.: Smooth positon solutions of the focusing modified Korteweg–de Vries equation. Nonlinear Dyn. 89, 2299–2310 (2017)

    Article  MathSciNet  Google Scholar 

  15. Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A., Torner, L.: Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1, 185–197 (2019)

    Article  Google Scholar 

  16. Xu, G.Q.: New types of exact solutions for the fourth-order dispersive cubic–quintic nonlinear Schrodinger equation. Appl. Math. Comput. 217, 5967–5971 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Zhou, Q., Zhu, Q.: Optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Waves Random Complex Media 25(1), 52–59 (2014)

    Article  MATH  Google Scholar 

  18. Liu, X., Zhou, Q., Biswas, A., Alzahrani, A., Liu, W.: The similarities and differences of different plane solitons controlled by (3 + 1) dimensional coupled variable coefficient system. J. Adv. Res. 24, 167–173 (2020)

    Article  Google Scholar 

  19. Xu, S.-L., Zhou, Q., Zhao, D., Belic, M.R., Zhao, Y.: Spatiotemporal solitons in cold Rydberg atomic gases with Bessel optical lattices. Appl. Math. Lett. 106, 106230 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Triki, H., Biswas, A.: Sub pico-second chirped envelope solitons and conservation laws in monomode optical fibers for a new derivative nonlinear Schrodinger’s model. Optik 173, 235–241 (2018)

    Article  Google Scholar 

  21. Khalique, C.M.: Exact solutions and conservation laws of a coupled integrable dispersionless system. Filomat 26(5), 957–964 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, G.-C., Wei, J.-L., Luo, C., Huang, L.-L.: Parameter estimation of fractional uncertain differential equations via Adams method. Nonlinear Anal. Modell. Control 27(3), 413–427 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, R.-F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  24. Khuri, S.A.: Soliton and periodic solutions for higher order wave equations of KdV type (I). Chaos Solitons Fractals 26, 25–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khuri, S.A.: Exact solutions for a class of nonlinear evolution equations: a unified ansätze approach. Chaos Solitons Fractals 36, 1181–1188 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ebaid, A.: Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method. Phys. Lett. A 365, 213–219 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Alquran, M., Jaradat, I., Baleanu, D.: Shapes and dynamics of dual-mode Hirota–Satsuma coupled KdV equations: exact traveling wave solutions and analysis. Chin. J. Phys. 58, 49–56 (2019)

    Article  MathSciNet  Google Scholar 

  28. Li, L.X.: Evolution behaviour of kink breathers and lump-M-solitons \((M\rightarrow \infty )\) for the (3 + 1)-dimensional Hirota–Satsuma–Ito-like equation. Nonlinear Dyn. 107, 3779–3790 (2022)

    Article  Google Scholar 

  29. Wazwaz, A.M.: Two kinds of multiple wave solutions for the potential YTSF equation and a potential YTSF-type equation. J. Appl. Nonlinear Dyn. 1, 51–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wazwaz, A.M.: One kink solution for a variety of nonlinear fifth-order equations. Discontin. Nonlinearity Complex. 1, 161–170 (2012)

    Article  MATH  Google Scholar 

  31. Wazwaz, A.M.: Abundant solutions of distinct physical structures for three shallow water waves models. Discontin. Nonlinearity Complex. 6, 295–304 (2017)

    Article  Google Scholar 

  32. Wazwaz, A.M.: Multiple real and multiple complex soliton solutions for the integrable Sine-Gordon equation. Optik 172, 622–627 (2018)

    Article  Google Scholar 

  33. Wazwaz, A.M.: Two wave mode higher-order modified KdV equations: essential conditions for multiple soliton solutions to exist. J. Numer. Methods Heat Fluid Flow 27(10), 2223–2230 (2017)

    Article  Google Scholar 

  34. Wazwaz, A.M., Xu, Gq.: An extended modified KdV equation and its Painlevé integrability. Nonlinear Dyn. 86, 1455–1460 (2016)

    Article  MATH  Google Scholar 

  35. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property of partial differential equations. J. Math. Phys. A 24, 522–526 (1983)

    Article  MATH  Google Scholar 

  36. Kaur, L., Wazwaz, A.M.: Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 94, 2469–2477 (2018)

    Article  MATH  Google Scholar 

  37. Nakamura, A.: Simple explode-decay mode solutions of a certain one space nonlinear evolutions equations. J. Phys. Soc. Jpn. 33(5), 1456–1458 (1972)

    Google Scholar 

  38. Li, B.-Q., Wazwaz, A.M., Ma, Y.-L.: Two new types of nonlocal Boussinesq equations in water waves: bright and dark soliton solutions. Chin. J. Phys. 77, 1782–1788 (2022)

    Article  MathSciNet  Google Scholar 

  39. Wang, G., Wazwaz, A.M.: On the modified Gardner type equation and its time fractional form. Chaos Solitons Fractals 155, 111694 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Article  Google Scholar 

  41. Wazwaz, A.M., Ali, K.: A variety of bright and dark optical soliton solutions of an extended higher-order Sasa–Satsuma equation. Optik 247, 167938 (2021)

    Article  Google Scholar 

  42. Ma, Y.-L., Wazwaz, A.M., Li, B.-Q.: Novel bifurcation solitons for an extended Kadomtsev–Petviashvili equation in fluids. Phys. Lett. A 413, 127585 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kumar, S., Dhiman, S.K., Baleanu, D., Osman, M.S., Wazwaz, A.-M.: Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2 + 1)-dimensional KP equations. Symmetry 14(3), 597 (2022)

  44. Zhang, Z., Li, B., Wazwaz, A.-M., Guo, Q.: The generation mechanism of multiple-pole solutions for the fifth-order mKdV equation. Eur. Phys. J. Plus 137(2), 193 (2022). https://doi.org/10.1140/epjp/s13360-022-02412-4

    Article  Google Scholar 

Download references

Funding

There is no funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Majid Wazwaz.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazwaz, AM. Multi-soliton solutions for integrable (\(3+1\))-dimensional modified seventh-order Ito and seventh-order Ito equations. Nonlinear Dyn 110, 3713–3720 (2022). https://doi.org/10.1007/s11071-022-07818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07818-4

Keywords

Navigation