Skip to main content
Log in

Interactions of rogue and solitary wave solutions to the (2 + 1)-D generalized Camassa–Holm–KP equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This research explores a (2 + 1)-D generalized Camassa–Holm–Kadomtsev–Petviashvili model. We use a probable transformation to build bilinear formulation to the model by Hirota bilinear technique. We derive a single lump waves, multi-soliton solutions to the model from this bilinear form. We present various dynamical properties of the model such as one, two, three and four solitons. The double periodic breather waves, periodic line rogue wave, interaction between bell soliton and double periodic rogue waves, rogue and bell soliton, rogue and two bell solitons, two rogues, rogue and periodic wave, double periodic waves, two pair of rogue waves as well as interaction of double periodic rogue waves in a line are established. Among the results, most of the properties are unexplored in the prior research. Furthermore, with the assistance of Maple software, we put out the trajectory of the obtained solutions for visualizing the achieved dynamical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors sketched the dynamical interactions of solitons and rogue with Maple. So, supported data are included inside this article and not taken from outside sources.

References

  1. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    MATH  Google Scholar 

  2. Khater, M.M.A., Akbar, M.A., Akinyemi, L., Inc, M.: Bifurcation of new optical solitary wave solutions for the nonlinear long-short wave interaction system via two improved models of expansion method. Opt. Quant. Electron 53, 507 (2021)

    Google Scholar 

  3. Shakeel, M., Mohyud-din, S.T., Iqbal, M.A.: Modified extended exp-function method for a system of nonlinear partial differential equations defined by seismic sea waves. Pramana-J. Phys. 91, 28 (2018)

    Google Scholar 

  4. Ullah, M.A., Hossen, M.B., Husna, S.: A study on exact solution of an integrable generalized Hirota-Satsuma equation of (2+1)-dimensions via Exp(-Φ(ξ))-expansion method. Int. J. Sci. Res. Eng. Dev. 3(1), 620–626 (2020)

    Google Scholar 

  5. Chen, H.T., Zhang, H.Q.: New multiple soliton-like solutions to the generalized (2+1)-dimensional KP equation. Appl. Math. Comput. 157, 765–773 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Hossen, M.B., Roshid, H.O., Ali, M.Z.: Modified double sub-equation method for finding complexiton solutions to the (1+1) Dimensional nonlinear evolution equations. Int. J. Appl. Comput. Math. 3(3), 1–19 (2017)

    MathSciNet  Google Scholar 

  7. Han, L., Bilige, S., Wang, X., Li, M., Zhang, R.: Rational wave solutions and dynamics properties of the generalized (2 + 1)-dimensional Calogero-Bogoyavlenskii-Schiff equation by using bilinear method. Adv. Math. Phys. 2021, 9295547 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Roshid, H.O., Ma, W.X.: Dynamics of mixed lump-solitary waves of an extended (2+1)-dimensional shallow water wave model. Phys. Lett. A 382(45), 3262–3268 (2018)

    MathSciNet  Google Scholar 

  9. Hossen, M.B., Roshid, H.O., Ali, M.Z., Rezazadeh, H.: Novel dynamical behaviors of interaction solutions of the (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili model. Phys. Scr. 96(2021), 125236 (2021)

    Google Scholar 

  10. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  11. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  12. Kumar, S., Kumar, A.: Lie symmetry reductions and group invariant solutions of (2+ 1)-dimensional modified Veronese web equation. Nonlinear Dyn. 98(3), 1891–1903 (2019)

    MATH  Google Scholar 

  13. Hossen, M.B., Roshid, H.O., Ali, M.Z.: Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2+1)-dimensional Breaking Soliton equation. Phys. Lett. A 382(19), 1268–1274 (2018)

    MathSciNet  Google Scholar 

  14. Zhao, Z.L., Chen, Y., Han, B.: Lump soliton, mixed lump stripe and periodic lump solutions of a (2 + 1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation. Mod. Phys. Lett. B 31, 1750157 (2017)

    MathSciNet  Google Scholar 

  15. Yusuf, A., Sulaiman, T., Abdeljabbar, A., Alquran, M.: Breather waves, analytical solutions and conservation laws using Lie–Bäcklund symmetries to the (2 + 1 )-dimensional Chaffee–Infante equation. J. Ocean Engineer. Sci. (2022). https://doi.org/10.1016/j.joes.2021.12.008

    Article  Google Scholar 

  16. Sulaiman, T., Yusuf, A., Abdeljabbar, A., Alquran, M.: Dynamics of lump collision phenomena to the (3+1)-dimensional nonlinear evolution equation. J. Geom. Phys. 169, 104347 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Kirane, M., Abdeljabbar, A.: Nonexistence of global solutions of systems of time fractional differential equations posed on the Heisenberg group. Math. Meth. Appl. Sci. (2022). https://doi.org/10.1002/mma.8243

    Article  MathSciNet  Google Scholar 

  18. Lou, S.Y., Tang, X.Y.: Nonlinear Mathematical Physics Method. Academic Press, Beijing (2006)

    Google Scholar 

  19. Ma, W.X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Wang, C., Fang, H., Tang, X.: State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation. Nonlinear Dyn. 95, 2943–2961 (2019)

    MATH  Google Scholar 

  21. Ma, H.C., Deng, A.P.: Lump solution of (2+1)-dimensional Boussinesq equation. Commun. Theor. Phys. 65, 546–552 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Yang, J.Y., Ma, W.X.: Lump solutions to the BKP equation by symbolic computation. Int. J. Mod. Phys. B 30(1–7), 1640028 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Imai, K.: Dromion and lump solutions of the Ishimori-I equation. Progr. Theoret. Phys. 98, 1013–1023 (1997)

    Google Scholar 

  25. Peng, W.Q., Tian, S.F., Zhang, T.T.: Analysis on lump, lump-off and rogue waves with predictability to the (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation. Phys. Lett. A 382(38), 2701–2708 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Paul, G.C., Eti, F., Kumar, D.: Dynamical analysis of lump, lump-triangular periodic, predictable rogue and breather wave solutions to the (3+1)-dimensional gKP–Boussinesq equation. Res. Phys. 19, 103525 (2020)

    Google Scholar 

  27. Ma, W.X.: Lump-type solutions to the (3+1)-dimensional Jimbo-Miwa equation. Int. J. Nonl. Sci. Numer. Stimul. 17, 355–359 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Hossen, M.B., Roshid, H.O., Ali, M.Z.: Multi-soliton, breathers, lumps and interaction solution to the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation. Heliyon 5(10), e02548 (2019)

    Google Scholar 

  29. Hoque, M.F., Roshid, H.O., Alshammari, F.S.: Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions of the (2+1)-dimensional ANNV equation. Chin. Phys. B 29, 114701 (2020)

    Google Scholar 

  30. Chen, M.D., Li, X., Wang, Y., Li, B.: A pair of resonance stripe solitons and lump solutions to a reduced (3+1)-dimensional nonlinear evolution equation. Commun. Theor. Phys. 67(6), 595 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Wen, L.L., Zhang, H.Q.: Rogue wave solutions of the (2+1)-dimensional derivative nonlinear Schrödinger equation. Nonlinear Dyn. 86(2), 877–889 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    MATH  Google Scholar 

  33. Abdeljabbar, A.: New double Wronskian solutions for a generalized (2+1)-dimensional Boussinesq system with variable coefficients. Par. Differ. Eqs. Appl. Math. 3, 100022 (2021)

    Google Scholar 

  34. Abdeljabbar, A., Tran, T.D.: Pfaffian solutions to a generalized KP system with variable coefficients. Appl. Math. Sci. 10(48), 2351–2368 (2016)

    Google Scholar 

  35. Ullah, M.S., Roshid, H.O., Ali, M.Z., Rahman, Z.: Dynamical structures of multi-soliton solutions to the Bogoyavlenskii’s breaking soliton equations. Eur. Phys. J. Plus 135(3), 282 (2020)

    Google Scholar 

  36. Alquran, M., Jaradat, I.: Multiplicative of dual-waves generated upon increasing the phase velocity parameter embedded in dual-mode Schrödinger with nonlinearity Kerr laws. Nonlinear Dyn. 96, 115–121 (2019)

    MATH  Google Scholar 

  37. Peng, Z., Yu, W., Wang, J., et al.: Dynamic analysis of seven-dimensional fractional-order chaotic system and its application in encrypted communication. J. Ambient Intell. Human Comput. 11, 5399–5417 (2020). https://doi.org/10.1007/s12652-020-01896-1

    Article  Google Scholar 

  38. Guo, J.L., Chen, Y.Q., Lai, G.Y., et al.: Neural networks-based adaptive control of uncertain nonlinear systems with unknown input constraints. J Ambient Intell. Human Comput. (2021). https://doi.org/10.1007/s12652-020-02582-y

    Article  Google Scholar 

  39. Rigatos, G., Siano, P., Zervos, S.: An approach to fault diagnosis of nonlinear systems using neural networks with invariance to Fourier transform. J. Ambient Intell. Human Comput. 4(6), 621–639 (2013). https://doi.org/10.1007/s12652-012-0173-4

    Article  Google Scholar 

  40. Kumar, S., Mohan, B., Kumar, R.: Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physics. Nonlinear Dyn (2022). https://doi.org/10.1007/s11071-022-07647-5

    Article  Google Scholar 

  41. Yin, Y.H., Lu, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06531-y

    Article  Google Scholar 

  42. Liu, S.H., Tian, B.: Singular soliton, shock-wave, breather-stripe soliton, hybrid solutions and numerical simulations for a (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada system in fluid mechanics. Nonlinear Dyn 108, 2471–2482 (2022). https://doi.org/10.1007/s11071-022-07279-9

    Article  Google Scholar 

  43. Osman, M.S., Inc, M., Liu, J.G., Hosseini, K., Yusuf, A.: Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation. Phys. Scr. 95(3), 035229 (2020)

    Google Scholar 

  44. Wazwaz, A.M.: The Camassa-Holm-KP equations with compact and noncompact travelling wave solutions. Appl. Math. Comput. 170, 347–360 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Qin, C.Y., Tian, S.F., Wang, X.B., Zhang, T.T.: On breather waves, rogue waves and solitary waves to a generalized (2+1)-dimensional Camassa-Holm-Kadomtsev-Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 62, 378–385 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Zhen, L., Qiang, X.: Symmetry reductions and exact solutions of the (2+1)-dimensional Camassa-Holm Kadomtsev-Petviashvili equation. Pramana J. Phys. 85, 3–16 (2015)

    Google Scholar 

  47. Ebadi, G., Fard, Y., Biswas, A.: Exact solutions of the (2+1)-dimensional Camassa-Holm Kadomtsev-Petviashvili equation. Nonlinear Anal. Model Control 17, 280–296 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Biswas, A.: 1-Soliton solution of the generalized Camassa-Holm Kadomtsev-Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 14, 2524–2527 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Wang, X.B., Tian, S.F., Xu, M.J., Zhang, T.T.: On integrability and quasi-periodic wave solutions to a (3+1)-dimensional generalized KdV-like model equation. Appl. Math. Comput. 283, 216–233 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Wang, X.B., Tian, S.F., Feng, L.L., Yan, H., Zhang, T.T.: Quasiperiodic waves, solitary waves and asymptotic properties for a generalized (3 + 1)-dimensional variable coefficient B-type Kadomtsev-Petviashvili equation. Nonlinear Dyn. 88, 2265–2279 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Gupta, V., Mittal, M., Mittal, V.: R-peak detection based chaos analysis of ECG signal. Analog Integr. Circ. Sig. Process. 102, 479–490 (2020). https://doi.org/10.1007/s10470-019-01556-1

    Article  Google Scholar 

  52. Gupta, V., Mittal, M., Mittal, V.: R-Peak detection using chaos analysis in standard and real time ECG databases. IRBM 40(6), 341–354 (2019). https://doi.org/10.1016/j.irbm.2019.10.001

    Article  Google Scholar 

  53. Gupta, V., Mittal, M.: QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. J. Inst. Eng. India Ser. B 100, 489–497 (2019). https://doi.org/10.1007/s40031-019-00398-9

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to editor, reviewers and to Khalifa University, Abu Dhabi, United Arab Emirates, for financial support in this research.

Funding

This research was partially funded by Khalifa University, Abu Dhabi, United Arab Emirates, and Prince Sattam bin Abdulaziz University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alrazi Abdeljabbar or Harun-Or Roshid.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdeljabbar, A., Hossen, M.B., Roshid, HO. et al. Interactions of rogue and solitary wave solutions to the (2 + 1)-D generalized Camassa–Holm–KP equation. Nonlinear Dyn 110, 3671–3683 (2022). https://doi.org/10.1007/s11071-022-07792-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07792-x

Keywords

Mathematical Subject Classification

Navigation