Skip to main content
Log in

Energy–momentum integration and analysis for sliding contact coupling dynamics in large flexible multibody system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 10 August 2022

This article has been updated

Abstract

This paper studies the energy–momentum conserving integration for large flexible dynamic systems combining the node-to-element sliding contact pair, which suffers strong coupling between deformation modes and large-scale sliding motion. Unlike node-to-node contact, the sliding contact pair places higher demands on smoothness of geometry description and reduction of material nonlinearity as the contact generally occurs on lines or surfaces. To maintain contact transition continuity, it is necessary to cautiously implement the interpolation of relative kinematic constraints. Moreover, the numerical treatment of auxiliary non-generalized variable influences the accuracy and stability in solving differential-algebraic system. To solve these problems, this paper has made improvements from the two aspects of flexibility description based on the rotationless director triad and isogeometric interpolation, and energy–momentum conserving integration. The treatment of sliding parameter derived from constraint equations is synchronized with that of the generalized variables in differential-algebraic system. Compared with three commonly used numerical methods, this integration shows advantages in strong robustness, conservation properties and convergence verified by typical numerical examples. Novel results are obtained for the sliding joint flexible multibody system revealing the performance of accuracy and robustness in complex dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Change history

References

  1. Gay Neto, A.: Simulation of mechanisms modeled by geometrically-exact beams using Rodrigues rotation parameters. Comput. Mech. 59(3), 459–481 (2017)

    Article  MathSciNet  Google Scholar 

  2. Mäkinen, J.: Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int. J. Numer. Methods Eng. 70(9), 1009–1048 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Giorgio, I.: A discrete formulation of Kirchhoff rods in large-motion dynamics. Math. Mech. Solids 25(5), 1081–1100 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ghosh, S., Roy, D.: Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam. Comput. Methods Appl. Mech. Eng. 198(3–4), 555–571 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhong, H., Zhang, R., Xiao, N.: A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Arch. Appl. Mech. 84(12), 1825–1840 (2014)

    Article  Google Scholar 

  6. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    Article  MATH  Google Scholar 

  7. Ghosh, S., Roy, D.: A frame-invariant scheme for the geometrically exact beam using rotation vector parametrization. Comput. Mech. 44(1), 103–118 (2009)

    Article  MATH  Google Scholar 

  8. Romero, I., Armero, F.: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int. J. Numer. Methods Eng. 54(12), 1683–1716 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leyendecker, S., Betsch, P., Steinmann, P.: Objective energy–momentum conserving integration for the constrained dynamics of geometrically exact beams. Comput. Methods Appl. Mech. Eng. 195(19–22), 2313–2333 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Betsch, P., Sänger, N.: On the consistent formulation of torques in a rotationless framework for multibody dynamics. Comput. Struct. 127, 29–38 (2013)

    Article  Google Scholar 

  11. Saravia, C.M., Machado, S.P., Cortínez, V.H.: A geometrically exact nonlinear finite element for composite closed section thin-walled beams. Comput. Struct. 89(23–24), 2337–2351 (2011)

    Article  Google Scholar 

  12. Saravia, C.M.: A large deformation–small strain formulation for the mechanics of geometrically exact thin-walled composite beams. Thin-Walled Struct. 84, 443–451 (2014)

    Article  Google Scholar 

  13. Meier, C., Popp, A., Wall, W.A.: An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 278, 445–478 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory. Arch. Comput. Methods Eng. 26(1), 163–243 (2019)

    Article  MathSciNet  Google Scholar 

  15. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2001)

    Article  Google Scholar 

  16. Dmitrochenko, O.N., Hussein, B.A., Shabana, A.A.: Coupled deformation modes in the large deformation finite element analysis: generalization. J. Comput. Nonlinear Dyn. 4(2), 146–154 (2009)

    Google Scholar 

  17. Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)

    Article  MATH  Google Scholar 

  18. Gerstmayr, J.: A corotational approach for 3D absolute nodal coordinate elements. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 49019, pp. 973–981 (2009)

  19. LaBudde, R.A., Greenspan, D.: Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. Numer. Math. 26(1), 1–16 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Simo, J.C., Tarnow, N.: The discrete energy–momentum method. conserving algorithms for nonlinear elastodynamics. Z. Angew. Math. Phys. ZAMP 43(5), 757–792 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6(5), 449–467 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gonzalez, O.: Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 190(13–14), 1763–1783 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Munoz, J.J., Jelenić, G.: Sliding joints in 3D beams: conserving algorithms using the master–slave approach. Multibody Syst. Dyn. 16(3), 237–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Leyendecker, S., Betsch, P., Steinmann, P.: The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part iii: flexible multibody dynamics. Multibody Syst. Dyn. 19(1), 45–72 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Romero, I.: An analysis of the stress formula for energy-momentum methods in nonlinear elastodynamics. Comput. Mech. 50(5), 603–610 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Betsch, P.: Energy-momentum integrators for elastic cosserat points, rigid bodies, and multibody systems. In: Structure-preserving Integrators in nonlinear structural dynamics and flexible multibody dynamics, pp 31–89. Springer (2016)

  27. Gebhardt, C.G., Hofmeister, B., Hente, C., Rolfes, R.: Nonlinear dynamics of slender structures: a new object-oriented framework. Comput. Mech. 63(2), 219–252 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Orden, J.C.G.: Energy and symmetry-preserving formulation of nonlinear constraints and potential forces in multibody dynamics. Nonlinear Dyn. 95(1), 823–837 (2019)

    Article  Google Scholar 

  29. Hong, D., Ren, G.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26(1), 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sugiyama, H., Escalona, J.L., Shabana, A.A.: Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dyn. 31(2), 167–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee, S.-H., Park, T.-W., Seo, J.-H., Yoon, J.-W., Jun, K.-J.: The development of a sliding joint for very flexible multibody dynamics using absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(3), 223–237 (2008)

    Article  MATH  Google Scholar 

  32. Leyendecker, S., Betsch, P., Steinmann, P.: Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches. Comput. Mech. 33(3), 174–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Muñoz, J.J., Jelenić, G.: Sliding contact conditions using the master–slave approach with application on geometrically non-linear beams. Int. J. Solids Struct. 41(24–25), 6963–6992 (2004)

    Article  MATH  Google Scholar 

  34. Espath, L.F.R., Braun, A.L., Awruch, A.M.: Energy conserving and numerical stability in non linear dynamic using isogeometric analysis. Mecánica Comput. 32(2), 33–62 (2013)

    Google Scholar 

  35. Eugster, S.R., Hesch, C., Betsch, P., Glocker, Ch.: Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. Int. J. Numer. Methods Eng. 97(2), 111–129 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  37. Romero, J.J.M.: Finite-element analysis of flexible mechanisms using the master–slave approach with emphasis on the modelling of joints. PhD thesis, University of London (2004)

  38. Simo, J.C., Tarnow, N., Wong, K.K.: Exact energy–momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput. Methods Appl. Mech. Eng. 100(1), 63–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45(1–2), 109–130 (2006)

    Article  MATH  Google Scholar 

  40. Simo, J.C., Gonzalez, O.: Assessment of energy-momentum and symplectic schemes for stiff dynamical systems. In: ASME Winter Annual Meeting, American Society of Mechanical Engineers, New Orleans, Louisiana (1993)

  41. Franke, M., Janz, A., Schiebl, M., Betsch, P.: An energy momentum consistent integration scheme using a polyconvexity-based framework for nonlinear thermo-elastodynamics. Int. J. Numer. Methods Eng. 115(5), 549–577 (2018)

    Article  MathSciNet  Google Scholar 

  42. Erlicher, S., Bonaventura, L., Bursi, O.S.: The analysis of the generalized-\(\alpha \) method for non-linear dynamic problems. Comput. Mech. 28(2), 83–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Guo, J., Betsch, P., Zhang, Y.: Structure-preserving algorithms for simple sliding contact constraint in director-based geometric exact beam. In: 14th WCCM-ECCOMAS Congress 2020: Collection of Papers Presented at the 14th Edition of the WCCM-ECCOMAS, Virtual Congress, January, 11–15, 2021. Ed.: F. Chinesta (2021)

Download references

Acknowledgements

A shortened version [43] of this research was published in the conference proceeding of the 14th WCCM-ECCOMAS Congress 2020. This paper provides substantial extensions and improvements, in which the dynamic model, conservation proof and simulation are refined. Additional analysis on the accuracy and convergence rate is provided. We also thank Prof. Peter Betsch for valuable guidance.

Funding

This research was supported by National Natural Science Foundation of China (Grant No. 12102316), China Scholarship Council (CSC) (Grant No. 201806120093), National Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-288) and Science and Technology on Space Intelligent Control Laboratory (Grant No. HTKJ2019KL502016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Proof of invariance of discrete strain measure

Appendix A Proof of invariance of discrete strain measure

Define the generalized coordinates \({{\varvec{q}}^\#}=\{ {\varvec{\varphi }}^\#, {\varvec{d}}^\#_I \}\) in a new configuration after superimposing the rigid body motion \(( {\varvec{\varphi }}_{R}, {\varvec{\Lambda }}_{R} )\) as

$$\begin{aligned} ({\varvec{\varphi }}^A)^\#= & {} {\varvec{\varphi }}_{R} + {\varvec{\Lambda }}_{R}{\varvec{\varphi }}^A , \nonumber \\ ({\varvec{d}}^A_I)^\#= & {} {\varvec{\Lambda }}_{R} {\varvec{d}}^A_I \end{aligned}$$
(A1)

Inserting this transformation into Eqs. (47) and (48), the newly approximated position gives:

$$\begin{aligned} ({\varvec{\varphi }}^{\mathrm{{h}}})^\#= & {} \sum \limits _{A = 1}^{ne} {{N}^A(s)}({\varvec{\varphi }^{A}})^\# \nonumber \\= & {} \sum \limits _{A = 1}^{ne} {{N}^A(s)} \left( {\varvec{\varphi }}_{R} + {\varvec{\Lambda }}_{R}{\varvec{\varphi }}^A \right) , \end{aligned}$$
(A2)

and the triad vectors become

$$\begin{aligned} ({\varvec{d}}_I^{\mathrm{{h}}})^\#= & {} \sum \limits _{A = 1}^{ne} {{N}^A(s)}({\varvec{d}_I^{A}})^\# \nonumber \\= & {} \sum \limits _{A = 1}^{ne} {{N}^A(s)}{\varvec{\Lambda }}_{R}{\varvec{d}^{A}_{I}} \end{aligned}$$
(A3)

Employing Eq. (A2), the axial generalized strain component in Eq. (19) is re-formulated as:

$$\begin{aligned} {({\varepsilon }^{\mathrm{{h}}}) ^\#}= & {} {\frac{1}{2} \left[ \left( {\varvec{\varphi }^{\mathrm{{h}}}_{,s}}\right) ^\# \cdot \left( {\varvec{\varphi }^{\mathrm{{h}}}_{,s}}\right) ^\# - 1 \right] } \nonumber \\= & {} \frac{1}{2} \left[ \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}_s^{B}} \left( {\varvec{\varphi }_R} + {\varvec{\Lambda }_R}{\varvec{\varphi }^A}\right) \cdot \right. \nonumber \\&\left. \left( {\varvec{\varphi }_R} + {\varvec{\Lambda }_R}{\varvec{\varphi }^B}\right) - 1 \right] \end{aligned}$$
(A4)

Likewise, the other scalar-valued strain components are:

$$\begin{aligned} {({\gamma }^{\mathrm{{h}}}_{\alpha }) ^\#}= & {} \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}^{B}} \left( {\varvec{\varphi }_R} + {\varvec{\Lambda }_R} {\varvec{\varphi }^A}\right) \cdot {\varvec{\Lambda }_R} {\varvec{d}_{\alpha }^{B}} \end{aligned}$$
(A5)
$$\begin{aligned} {({\kappa }^{\mathrm{{h}}}_{1}) ^\#}= & {} \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}^{B}} {\varvec{\Lambda }_R} {\varvec{d}_{2}^{A}} \cdot {\varvec{\Lambda }_R} {\varvec{d}_{3}^{B}} \end{aligned}$$
(A6)
$$\begin{aligned} {({\kappa }^{\mathrm{{h}}}_{\alpha }) ^\#}= & {} \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}_s^{B}} \left( {\varvec{\varphi }_R} + {\varvec{\Lambda }_R}{\varvec{\varphi }^A}\right) \cdot {\varvec{\Lambda }_R} {\varvec{d}_{\beta }^{B}} \end{aligned}$$
(A7)

Considering the superimposed rotation tensor satisfies \({ {\varvec{\Lambda }^{\mathrm{{T}}}_R} {\varvec{\Lambda }_R} = {\varvec{I}} }\), Eqs. (A4) and (A5) are derived as:

$$\begin{aligned} {({\varepsilon }^{\mathrm{{h}}})^{\#}}= & {} \frac{1}{2} \left\{ \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}_s^{B}} \left( {\varvec{\varphi }_R} \!\cdot \! {\varvec{\varphi }_R} + {\varvec{\Lambda }_R}{\varvec{\varphi }^A} \!\cdot \! {\varvec{\varphi }_R} \right. \right. \nonumber \\&\left. \left. + {\varvec{\varphi }_R} \!\cdot \! {\varvec{\Lambda }_R}{\varvec{\varphi }^B} + {\varvec{\varphi }^A} \!\cdot \! {\varvec{\varphi }^B} \right) - 1 \right\} \end{aligned}$$
(A8)
$$\begin{aligned} {({\gamma }^{\mathrm{{h}}}_{\alpha }) ^\#}= & {} \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}^{B}} \left( {\varvec{\varphi }_R} \cdot {\varvec{\Lambda }_R} {\varvec{d}_{\alpha }^{B}} + {\varvec{\varphi }^A} \cdot {\varvec{d}_{\alpha }^{B}} \right) \end{aligned}$$
(A9)
$$\begin{aligned} {({\kappa }^{\mathrm{{h}}}_{1}) ^\#}= & {} \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}^{B}} {\varvec{d}_{2}^{A}} \cdot {\varvec{d}_{3}^{B}} \end{aligned}$$
(A10)
$$\begin{aligned} {({\kappa }^{\mathrm{{h}}}_{\alpha }) ^\#}= & {} \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}_s^{B}} \left( {\varvec{\varphi }_R} \cdot {\varvec{\Lambda }_R} {\varvec{d}_{\alpha }^{B}} + {\varvec{\varphi }^A} \cdot {\varvec{d}_{\alpha }^{B}} \right) \end{aligned}$$
(A11)

The B-spline basis function is the partition of unity given by \({\sum \limits _{A = 1}^{ne} {{N}^{A}} = 1}\), which leads to the evolved partial derivative condition:

$$\begin{aligned} {\sum \limits _{A = 1}^{ne} {{N}_s^{A}} \cdot {\varvec{\varphi }_R} = {\varvec{0}}} \end{aligned}$$
(A12)

Substituting Eq. (A12) into Eqs. (A8)–(A11), the objectivity relation \({\varvec{\epsilon }^{\mathrm{{h}}} ( {\varvec{q}} ^\# ) = \varvec{\epsilon }^{\mathrm{{h}}} ( {\varvec{q}} )}\) is confirmed:

$$\begin{aligned} {({\varepsilon }^{\mathrm{{h}}}) ^\#}= & {} \frac{1}{2} \left\{ \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}_s^{B}} {\varvec{\varphi }^A} \cdot {\varvec{\varphi }^B} - 1 \right\} = {\varepsilon }^{\mathrm{{h}}} \nonumber \\ {({\gamma }^{\mathrm{{h}}}_{\alpha }) ^\#}= & {} \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}^{B}} {\varvec{\varphi }^A} \cdot {\varvec{d}_{\alpha }^{B}} = {\gamma }^{\mathrm{{h}}}_{\alpha } \nonumber \\ {({\kappa }^{\mathrm{{h}}}_{1}) ^\#}= & {} \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}^{B}} {\varvec{d}_{2}^{A}} \cdot {\varvec{d}_{3}^{B}} = {\kappa }^{\mathrm{{h}}}_{1} \nonumber \\ {({\kappa }^{\mathrm{{h}}}_{\alpha }) ^\#}= & {} \sum \limits _{A,B = 1}^{ne} {{N}_s^{A}} {{N}_s^{B}} {\varvec{\varphi }^A} \cdot {\varvec{d}_{\beta }^{B}} = {\kappa }^{\mathrm{{h}}}_{\alpha } \end{aligned}$$
(A13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhang, Y., Wei, C. et al. Energy–momentum integration and analysis for sliding contact coupling dynamics in large flexible multibody system. Nonlinear Dyn 110, 2333–2359 (2022). https://doi.org/10.1007/s11071-022-07707-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07707-w

Keywords

Navigation