Skip to main content
Log in

Distributed robust control for a class of semilinear fractional-order reaction–diffusion systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is devoted to considering the problem of distributed robust Mittag–Leffler (M–L) stabilization for a class of semilinear fractional-order reaction–diffusion systems (FRDSs), in which the controllers and sensors are discretely distributed in space. In the case of the controllers and the sensors being collocated, the distributed robust control law is directly designed according to the measurements of the corresponding sensors. However, when they are non-collocated, i.e., the measurement information of the sensors cannot be directly used in the control design, which brings additional difficulties to the design of the controllers. To overcome the previous difficulties, an extended Luenberger-type observer is constructed, and then, based on the observer measurement information, a distributed robust controller is designed. For the above two cases, sufficient conditions are all presented in terms of linear matrix inequalities (LMIs) to ensure the M–L stability of the closed-loop system. Finally, simulation results on the control of the semilinear FRDSs illustrate the effectiveness of the proposed design method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971)

    MATH  Google Scholar 

  2. Caputo, M.: Vibrations on an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 56(3), 897–904 (1974)

    MATH  Google Scholar 

  3. Nigmatullin, R.R.: To the theoretical explanation of the universal response. Phys. Status Solidi (B) Basic Res. 123(2), 739–745 (1984)

    Google Scholar 

  4. Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi (B) Basic Res. 133(1), 425–430 (1986)

    Google Scholar 

  5. Vlad, M.O., Ross, J.: Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: Application to the theory of neolithic transition. Phys. Rev. E 66(6), 061968 (2002)

    MathSciNet  Google Scholar 

  6. Chen, L., Wu, R., Chu, Z., He, Y., Yin, L.: Pinning synchronization of fractional-order delayed complex networks with non-delayed and delayed couplings. Int. J. Control 90(6), 1245–1255 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Zhang, L., Yang, Y., Xu, X.: Synchronization analysis for fractional order memristive Cohen-Grossberg neural networks with state feedback and impulsive control. Phys. A Stat. Mech. Appl. 506(9), 644–660 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Qiao, Y., Zhao, J., Feng, X.: A compact integrated RBF method for time fractional convection-diffusion-reaction equations. Comput. Math. Appl. 77(9), 2263–2278 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Li, Y., Wei, M., Tong, S.: Event-triggered adaptive neural control for fractional-order nonlinear systems based on finite-time scheme. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3056990

    Article  Google Scholar 

  10. Bai, Q., Shu, J., Li, L., Li, H.: Dynamical behavior of non-autonomous fractional stochastic reaction-diffusion equations. J. Math. Anal. Appl. 485(2), 123833 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Li, Y., Wang, Q., Tong, S.: Fuzzy adaptive fault-tolerant control of fractional-order nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 51(3), 1372–1379 (2021)

    Google Scholar 

  12. Nikana, O., Tenreiro Machado, J.A., Golbabai, A.: Numerical solution of time fractional fourth-order reaction-diffusion model arising in composite environments. Appl. Math. Model. 89(1), 819–836 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Li, Y., Chen, Y., Podlubnyc, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59(5), 1810–1821 (2009)

    MathSciNet  Google Scholar 

  14. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional-order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Ge, F., Chen, Y.: Boundary feedback stabilisation for the time fractional-order anomalous diffusion system. IET Control Theory Appl. 10(11), 1250–1257 (2016)

    MathSciNet  Google Scholar 

  16. Ge, F., Chen, Y.: Event-triggered boundary feedback control for networked reaction-subdiffusion processes with input uncertainties. Inf. Sci. 476(9), 239–255 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Ge, F., Chen, Y.: Regional output feedback stabilization of semi-linear time fractional diffusion systems in a parallelepipedon with control constraints. Int. J. Robust Nonlinear Control 30(9), 3639–3652 (2020)

    MATH  Google Scholar 

  18. Ge, F., Chen, Y.: Observer-based event triggered control for semi-linear time fractional diffusion systems with distributed feedback. Nonlinear Dyn. 99(2), 1089–1101 (2020)

    MATH  Google Scholar 

  19. Chen, J., Tepljakov, A., Petlenkov, E., Zhuang, B.: Boundary state and output feedbacks for underactuated systems of coupled time fractional PDEs with different space dependent diffusivity. Int. J. Syst. Sci. 51(15), 2922–2942 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Chen, J., Tepljakov, A., Petlenkov, E., Chen, Y., Zhuang, B.: Boundary Mittag-Leffler stabilization of coupled time fractional order reaction-advection-diffusion systems with nonconstant coefficients. Syst. Control Lett. 149(9), 104875 (2021)

    MATH  Google Scholar 

  21. Smyshlyaev, A., Krstic, M.: Closed form boundary state feedbacks for a class of 1-D partial-integro-differential equations. IEEE Trans. Autom. Control 49(12), 2185–2202 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Hasan, A.: Backstepping boundary control for semilinear parabolic PDEs. In: Proceedings 54th IEEE Conference on Decision and Control. Osaka, Japan, pp. 2513–2518 (2015)

  23. Christofides, P.D.: Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes. Birkhauser, Boston (2001)

    MATH  Google Scholar 

  24. Banks, H.T., Smith, R.S., Wang, Y.: Smart Material Structures: Modeling, Estimation and Control. Wiley, New York (1996)

    MATH  Google Scholar 

  25. Bamieh, B., Paganini, F., Dahleh, M.A.: Distributed control of spatially invariant systems. IEEE Trans. Autom. Control 47(7), 1091–1107 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Wang, J., Liu, Y., Sun, C.: Observer-based dynamic local piecewise control of a linear parabolic PDE using non-collocated local piecewise observation. IET Control Theory Appl. 12(3), 346–358 (2018)

    MathSciNet  Google Scholar 

  27. Wang, J., Wu, H.: Exponential pointwise stabilization of semi-linear parabolic distributed parameter systems via the Takagi-Sugeno fuzzy PDE model. IEEE Trans. Fuzzy Syst. 26(1), 155–173 (2018)

    Google Scholar 

  28. Wang, J., Liu, Y., Sun, C.: Pointwise exponential stabilization of a linear parabolic PDE system using non-collocated pointwise observation. Automatica 93, 197–210 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  30. Kharkovskaia, T., Efimov, D., Fridman, E., Polyakov, A.: Interval observer design and control of uncertain non-homogeneous heat equations. Automatica 111, 108595 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, vol. 2, pp. 963–968 (1996)

  32. Wang, J., Wu, H.: Some extended Wirtinger’s inequalities and distributed proportional spatial integral control of distributed parameter systems with multi-time delays. J. Frankl. Inst. 352(10), 4423–4445 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Hardy, G., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  34. Wang, J., Wu, H.: Lyapunov-based design of locally collocated controllers for semilinear parabolic PDE systems. J. Frankl. Inst. 351(1), 429–441 (2014)

    MATH  Google Scholar 

  35. Lacarbonara, W., Yabuno, H.: Closed-loop nonlinear control of an initially imperfect beam with noncollocated input. J. Sound Vib. 273(4–5), 695–711 (2004)

    MATH  Google Scholar 

  36. Liu, J., Xu, M.: An exact solution to the moving boundary problem with fractional anomalous diffusion in drug release devices. ZAMM. Z. Angew. Math. Mech. 84(1), 22–28 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Li, X., Xu, M., Jiang, X.: Homotopy perturbation method to time fractional diffusion equation with a moving boundary condition. Appl. Math. Comput. 208(2), 434–439 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Xiao, J., Zhong, S., Wen, S.: Unified analysis on the global dissipativity and stability of fractional order multidimension-valued memristive neural networks with time delay. IEEE Trans. Neural Netw. Learn. Syst. 10, 10 (2021). https://doi.org/10.1109/TNNLS.2021.3071183

    Article  Google Scholar 

  39. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3), 1063–1077 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Li, F., Liang, J., Xu, H.: Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391(2), 510–525 (2012)

    MATH  Google Scholar 

  41. Yan, Z.: Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay. Int. J. Control 85(8), 1051–1062 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Mainardi, F., Paradisi, P., Gorenflo, R.: Probability distributions generated by fractional diffusion equations, in: J. Kertesz, I. Kondor (eds.), Econophysics: An Emerging Science. Kluwer Academic Publishers, Dordrecht (2007). arXiv:0704.0320v1

  43. Zou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. 11(5), 4465–4475 (2010)

    MathSciNet  MATH  Google Scholar 

  44. El-Borai, M.M.: Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fract. 14(3), 433–440 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Curtain, R.F., Zwart, H.J.: An Introduction to Infinite Dimensional Linear Systems Theory. Springer, New York (1995)

    MATH  Google Scholar 

  46. Xiao, F.: A class of nonlinear fractional integro-differential equations with nonlocal condition. Int. J. Evol. Equ. 5(4), 365–374 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  48. Blighovsky, A., Fridman, E.: Robust sampled data control of a class of semilinear parabolic systems. Automatica 48(5), 826–836 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Wang, J., Wang, J.: Mixed \(H_2/H_\infty \) sampled-data output feedback control design for a semilinear parabolic PDE in the sense of spatial \(L^\infty \) norm. Automatica 103, 282–293 (2019)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the National Natural Science Foundation of China (Grant Nos. 61573013, 61603286 and 62003254) and the Fundamental Research Funds for the Central Universities (Grant No. YJS2215).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Li.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Before proving Lemma 2.1, a few definitions that need to be used are given first.

Definition A.1

(See [39].) The fractional integral of order \(\alpha \) with the lower limit zero for a function f is defined as:

$$\begin{aligned}&I^{\alpha }f(t)=\frac{1}{\Gamma (\alpha )}\int _{0}^{t}(t-s)^{\alpha -1}f(s)ds,\\&\quad t\ge 0, \quad 0<\alpha <1, \end{aligned}$$

provided the right-hand side is pointwise defined on \([0,\infty )\), where \(\Gamma (\cdot )\) is the Gamma function.

Definition A.2

(See [39]) Riemann–Liouville derivative of order \(\alpha \) with the lower limit zero for a function f can be written as: as

$$\begin{aligned}&{}^{L}D^{\alpha }f(t)=\frac{1}{\Gamma (1-\alpha )}\frac{d}{dt}\int _{0}^{t}(t-s)^{-\alpha }f(s)ds,\\&\quad t\ge 0, \quad 0<\alpha <1. \end{aligned}$$

Definition A.3

(See [40]) The Caputo derivative of order \(\alpha \) for a function f can be written as:

$$\begin{aligned}&{}^{c}D^{\alpha }f(t)= {^{L}D^{\alpha }}(f(t)-f(0)), \\&\quad t\ge 0, \quad 0<\alpha <1. \end{aligned}$$

Proof of Lemma 2.1: As cited in [17], by using the definitions of operator \({\mathcal {A}}\) and \({\textbf {B}}\), the abstract evolution equations of (1)–(3) in \({\mathcal {H}}\) can be written as:

$$\begin{aligned} _{0}^{c} D_{t}^{\alpha }v(\cdot ,t)&={\mathcal {A}}v(\cdot ,t)+f(v(\cdot ,t))\nonumber \\&\quad +{\textbf {B}}{} {\textbf {u}}(t), t>0, , \end{aligned}$$
(A.1)
$$\begin{aligned}&v(\cdot ,0)=v_{0}. \end{aligned}$$
(A.2)

The following proof consists of two parts:

Part 1. According [41] and the Definition A.1–Definition A.3, it is suitable to rewrite the problem (A.1)–(A.2) in the equivalent integral equation

$$\begin{aligned} v(\cdot ,t)&= v_{0}+\frac{1}{\Gamma (\alpha )}\int _{0}^{t}(t-s)^{\alpha -1}\nonumber \\&\quad \bigg [{\mathcal {A}}v(\cdot ,s)+f(v(\cdot ,s))+{\textbf {B}}{} {\textbf {u}}(s)\bigg ]ds, \end{aligned}$$
(A.3)

provided that the integral in (A.3) exists. According to Lemma 2.1 in [41], we have a conclusion that if (A.3) holds, then

$$\begin{aligned}&v(\cdot ,t)=\int _{0}^{\infty }\vartheta _{\alpha }(\zeta )\Phi (t^{\alpha }\zeta )d\zeta v_{0}\nonumber \\&\qquad +\alpha \int _{0}^{t}\int _{0}^{\infty }\frac{\zeta \vartheta _{\alpha }(\zeta )\Phi ((t-\tau )^{\alpha }\zeta )}{(t-\tau )^{1-\alpha }}d\zeta (f(v(\cdot ,\tau ))\nonumber \\&\qquad +{\textbf {B}}{} {\textbf {u}}(\tau ))d\tau , \end{aligned}$$
(A.4)

that is, the expression (5) is the mild solution of (A.1)–(A.2), where \(\vartheta _{\alpha }(t)=\alpha ^{-1}t^{-1-\frac{1}{\alpha }}\psi _{\alpha }(t^{-\frac{1}{\alpha }})\) and \(\psi _{\alpha }(t)\) is the one-side stable probability density and can be chosen as: \(\psi _{\alpha }(t)=\sum _{n=1}^{+\infty }\frac{(-1)^{n-1}\sin (n\alpha \pi )\Gamma (n\alpha +1)}{\pi t^{\alpha n+1}n!},t>0\) (see [42]).

Next, we give the proof of (A.4) by using the method in [39,40,41].

Set \(\breve{v}(\lambda )=\int _{0}^{\infty }e^{-\lambda t}v(\cdot ,t)dt\), \(\breve{f}(\lambda )=\int _{0}^{\infty }e^{-\lambda t} f(v(\cdot ,t))dt\), \(\breve{{\textbf {u}}}(\lambda )=\int _{0}^{\infty }e^{-\lambda t}{} {\textbf {u}}(t)dt\). Utilizing the similar method in [44] and applying the Laplace transform to (A.3), we have

$$\begin{aligned} \breve{v}(\lambda )=\frac{1}{\lambda }v_{0}+\frac{1}{\lambda ^{\alpha }}{\mathcal {A}}\breve{v}(\lambda )+\frac{1}{\lambda ^{\alpha }}\breve{f}(\lambda )+\frac{1}{\lambda ^{\alpha }}{} {\textbf {B}}\breve{{\textbf {u}}}(\lambda ), \end{aligned}$$

then

$$\begin{aligned}&\breve{v}(\lambda )=\lambda ^{\alpha -1}(\lambda ^{\alpha }I-{\mathcal {A}})^{-1}v_{0}\nonumber \\&\qquad +(\lambda ^{\alpha }I-{\mathcal {A}})^{-1}\breve{f}(\lambda )+(\lambda ^{\alpha }I-{\mathcal {A}})^{-1}{} {\textbf {B}}\breve{{\textbf {u}}}(\lambda )\nonumber \\&\quad =\lambda ^{\alpha -1}\int _{0}^{\infty }e^{-\lambda ^{\alpha }s}\Phi (s)v_{0}ds\nonumber \\&\qquad +\int _{0}^{\infty }e^{-\lambda ^{\alpha }s}\Phi (s)\breve{f}(\lambda )ds\nonumber \\&\qquad +\int _{0}^{\infty }e^{-\lambda ^{\alpha }s}\Phi (s){\textbf {B}}\breve{{\textbf {u}}}(\lambda )ds, \end{aligned}$$
(A.5)

where I is the identity operator.

Consider the one-side stable probability density [42]

$$\begin{aligned} \psi _{\alpha }(t)=\sum _{n=1}^{+\infty }\frac{(-1)^{n-1}\sin (n\alpha \pi )\Gamma (n\alpha +1)}{\pi t^{\alpha n+1}n!},t>0, \end{aligned}$$

whose Laplace transform is given by

$$\begin{aligned}&\int _{0}^{\infty }e^{-\lambda s}\psi _{\alpha }(s)ds\nonumber \\&\quad =e^{-\lambda ^{\alpha }}, \alpha \in (0,1). \end{aligned}$$
(A.6)

Thus, we get

(A.7)

and

(A.8)

Similarly, we have

$$\begin{aligned}&\int _{0}^{\infty }e^{-\lambda ^{\alpha }s}\Phi (s){\textbf {B}}\breve{{\textbf {u}}}(\lambda )ds\nonumber \\&\quad =\int _{0}^{\infty }e^{-\lambda t}\nonumber \\&\qquad \bigg (\alpha \int _{0}^{t} \int _{0}^{\infty }\frac{(t-\theta )^{\alpha -1}}{s^{\alpha }} \psi _{\alpha }(s)\Phi \nonumber \\&\qquad \bigg (\frac{(t-\theta )^{\alpha }}{s^{\alpha }}\bigg ){\textbf {B}}{} {\textbf {u}}(\theta )ds d\theta \bigg )dt. \end{aligned}$$
(A.9)

Substituting (A.7)–(A.9) into (A.5), it gives

$$\begin{aligned} \breve{v}(\lambda )&=\int _{0}^{\infty }e^{-\lambda t}\bigg (\int _{0}^{\infty }\psi _{\alpha }(s)\Phi \bigg (\frac{t^{\alpha }}{s^{\alpha }}\bigg )v_{0}ds\nonumber \\&\quad +\alpha \int _{0}^{t} \int _{0}^{\infty }\frac{(t-\theta )^{\alpha -1}}{s^{\alpha }} \psi _{\alpha }(s)\Phi \bigg (\frac{(t-\theta )^{\alpha }}{s^{\alpha }}\bigg )\nonumber \\&f(v(\cdot ,\theta ))ds d\theta \nonumber \\&\quad +\alpha \int _{0}^{t} \int _{0}^{\infty }\frac{(t-\theta )^{\alpha -1}}{s^{\alpha }} \psi _{\alpha }(s)\Phi \bigg (\frac{(t-\theta )^{\alpha }}{s^{\alpha }}\bigg )\nonumber \\&{\textbf {B}}{} {\textbf {u}}(\theta )ds d\theta \bigg )dt. \end{aligned}$$
(A.10)

Taking the inverse Laplace transform of (A.10), then, it gives

$$\begin{aligned} v(\cdot ,t)&= \int _{0}^{\infty }\psi _{\alpha }(s)\Phi \bigg (\frac{t^{\alpha }}{s^{\alpha }}\bigg )v_{0}ds\\&\quad +\alpha \int _{0}^{t} \int _{0}^{\infty }\frac{(t-\theta )^{\alpha -1}}{s^{\alpha }} \psi _{\alpha }(s)\Phi \bigg (\frac{(t-\theta )^{\alpha }}{s^{\alpha }}\bigg )\\&\quad \bigg (f(v(\cdot ,\theta ))+{\textbf {B}}{} {\textbf {u}}(\theta )\bigg )ds d\theta \\&=\int _{0}^{\infty }\vartheta _{\alpha }(\zeta )\Phi (t^{\alpha }\zeta )d\zeta v_{0}\\&\quad +\alpha \int _{0}^{t}\int _{0}^{\infty }\frac{\zeta \vartheta _{\alpha }(\zeta )\Phi ((t-\tau )^{\alpha }\zeta )}{(t-\tau )^{1-\alpha }}d\zeta (f(v(\cdot ,\tau ))\\&\quad +{\textbf {B}}{} {\textbf {u}}(\tau ))d\tau , \end{aligned}$$

where \(\vartheta _{\alpha }(t)=\alpha ^{-1}t^{-1-\frac{1}{\alpha }}\psi _{\alpha }(t^{-\frac{1}{\alpha }})\).

Part 2. There is a unique \(v(\cdot ,t)\) such that Eq. (A.4) holds.

First, the operator \({\mathcal {F}}\) is defined as \({\mathcal {F}}: C([0,T]; L^{2}(0,1))\rightarrow C([0,T]; L^{2}(0,1))\), then (A.4) can be written as:

$$\begin{aligned}&({\mathcal {F}}v)(t)={\mathcal {P}}(t) v_{0}+\alpha \int _{0}^{t}{\mathcal {Q}}(t-\tau ) (f(v(\cdot ,\tau ))\nonumber \\&\qquad +{\textbf {B}}{} {\textbf {u}}(\tau ))d\tau , \ \ t\in [0,T], \end{aligned}$$
(A.11)

where \({\mathcal {P}}(t)\triangleq \int _{0}^{\infty }\vartheta _{\alpha }(\zeta )\Phi (t^{\alpha }\zeta )d\zeta \) and \({\mathcal {Q}}(t)\triangleq \int _{0}^{\infty }\frac{\zeta \vartheta _{\alpha }(\zeta )\Phi (t^{\alpha }\zeta )}{t^{1-\alpha }}d\zeta \).

Since semigroup \(\Phi (t)\) is uniformly bounded analytic semigroup, there exists \(\bar{{\mathcal {M}}}>0\) such that \(\parallel \Phi (t)\parallel \le \bar{{\mathcal {M}}}\) (see [45]), Meanwhile, we have \(\vartheta _{\alpha }(\zeta )>0\) and \(\int _{0}^{\infty }\zeta \vartheta _{\alpha }(\zeta )d\zeta =\frac{1}{\Gamma (1+\alpha )}\) (see [46]). Then, when \({\textbf {u}}(t)=0\), for any \(u, v \in C([0,T]; L^{2}(0,1))\),

$$\begin{aligned}&\parallel ({\mathcal {F}}u)(t)-({\mathcal {F}}v)(t)\parallel _{L^2(0,1)}\nonumber \\&\quad \le \frac{\alpha \chi \bar{{\mathcal {M}}}}{\Gamma (1+\alpha )}\nonumber \\&\quad \int _{0}^{t}(t-\tau )^{\alpha -1}\parallel u(\cdot ,\tau )-v(\cdot ,\tau )\parallel _{L^2(0,1)} d\tau \nonumber \\&\quad \le \frac{\alpha \bar{{\mathcal {M}}}\chi \parallel u-v\parallel _{C([0,T];L^2(0,1))}}{\Gamma (1+\alpha )}\nonumber \\&\quad \int _{0}^{t}(t-\tau )^{\alpha -1}d\tau \nonumber \\&\quad \le \frac{\bar{{\mathcal {M}}}\chi T^{\alpha }}{\Gamma (1+\alpha )}\parallel u-v\parallel _{C([0,T];L^2(0,1))}, \end{aligned}$$
(A.12)

where \(T\le (\frac{\Gamma (1+\alpha )}{\bar{{\mathcal {M}}}\chi })^{\frac{1}{\alpha }}\) and \(\chi >0\) is the Lipschitz constant. Then, by (A.12), one can derive \(\Vert {\mathcal {F}}u-{\mathcal {F}}v\Vert _{C([0,T],L^2(0,1))}\le \frac{\bar{{\mathcal {M}}}\chi T^{\alpha }}{\Gamma (1+\alpha )}\Vert u-v\Vert _{C([0,T],L^2(0,1))}\).

Thus, according to the Banach fixed-point theorem—the contraction mapping principle [47], there exists unique fixed point \(v\in C([0,T]; L^{2}(0,1))\) such that \({\mathcal {F}}v=v\), namely, Eq. (A.4) has a unique solution \(v\in C([0,T];L^2(0,1))\). Based on the Lemma on the extension of solutions, it can be concluded that Eq. (A.4) exists unique solution on \((0, +\infty )\). So this proves the existence and uniqueness of solutions to equation (A.1)–(A.2). When \({\textbf {u}}(t)\ne 0\), define the operator \({\mathfrak {c}}\in \mathrm {L}({\mathcal {H}}, {\mathbb {R}}^{m})\) as \({\mathfrak {c}}v(\cdot ,t)\triangleq \int _{0}^{1}{\varvec{c}}(s)v(s,t)ds\). Evidently, the operator \({\textbf {B}}{\varvec{K}}{\mathfrak {c}}\) is a bounded one. With the help of the idea in [48, 49], we can get the conclusion according to the similar proof process above, so it is omitted. In this way, we have completed the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, A., Li, J. & Lei, Y. Distributed robust control for a class of semilinear fractional-order reaction–diffusion systems. Nonlinear Dyn 109, 1743–1762 (2022). https://doi.org/10.1007/s11071-022-07546-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07546-9

Keywords

Navigation