Skip to main content
Log in

An asymmetric quasi-zero stiffness vibration isolator with long stroke and large bearing capacity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel passive asymmetric quasi-zero stiffness vibration isolator (AQZS-VI) comprising two linear springs acting in parallel with one negative stiffness element (NSE) is proposed, of which the NSE is mainly constructed by the combination of cantilever plate spring and L-shaped lever (CPS-LSL). The static model of the isolator is deduced considering the geometrical nonlinearity of the NSE and the bending deformation of plate spring. The nonlinear stiffness properties of the CPS-LSL and the AQZS-VI, as well as the nonlinear damping properties of the AQZS-VI, are discussed. The absolute displacement transmissibility of the AQZS-VI under base displacement excitation is obtained using harmonic balance method, and the effects of different excitation amplitudes and damping factors on the vibration isolation performance are analyzed. Better than other quasi-zero stiffness vibration isolators (QZS-VI) whose NSEs do not provide supporting force at zero stiffness point, the NSE of the AQZS-VI provides more supporting force than the parallel connected linear springs, which is very beneficial for improving the bearing capacity of the isolator. Compared with a typical symmetric QZS-VI with same damping property, the AQZS-VI has longer stroke with low stiffness and lower peak value of displacement transmissibility. The prototype experiments indicate that the AQZS-VI outperforms the linear counterpart with much smaller starting frequency of vibration isolation and lower displacement transmissibility. The proposed AQZS-VI has great potential for applying in various engineering practices with superior vibration isolation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Availability of data and material

Data will be made available on reasonable request.

References

  1. Kim, J., Jeon, Y., Um, S., Park, U., Kim, K.-S., Kim, S.: A novel passive quasi-zero stiffness isolator for ultra-precision measurement systems. Int. J. Precis. Eng. Man. 20, 1573–1580 (2019). https://doi.org/10.1007/s12541-019-00149-2

    Article  Google Scholar 

  2. Zhang, J.Z., Li, D., Chen, M.J., Dong, S.: An ultra-low frequency parallel connection nonlinear isolator for precision instruments. Key Eng. Mater. 257–258, 231–238 (2004). https://doi.org/10.4028/www.scientific.net/KEM.257-258.231

    Article  Google Scholar 

  3. Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330, 6311–6335 (2011). https://doi.org/10.1016/j.jsv.2011.07.039

    Article  Google Scholar 

  4. Le, T.D., Ahn, K.K.: Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 70, 99–112 (2013). https://doi.org/10.1016/j.ijmecsci.2013.02.009

    Article  Google Scholar 

  5. Oyelade, A.O.: Vibration isolation using a bar and an Euler beam as negative stiffness for vehicle seat comfort. Adv. Mech. Eng. (2019). https://doi.org/10.1177/1687814019860983

    Article  Google Scholar 

  6. Dai, H., Jing, X., Wang, Y., Yue, X., Yuan, J.: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mech. Syst. Signal Process. 105, 214–240 (2018). https://doi.org/10.1016/j.ymssp.2017.12.015

    Article  Google Scholar 

  7. Lin, Y.-S., Chan, R.W.K., Tagawa, H.: Earthquake early warning-enabled smart base isolation system. Automat. Constr. 115, 103203 (2020). https://doi.org/10.1016/j.autcon.2020.103203

    Article  Google Scholar 

  8. D’Amato, M., Laguardia, R., Gigliotti, R.: Seismic retrofit of an existing RC building with isolation devices applied at base. Front. Built Environ. 6, 82 (2020). https://doi.org/10.3389/fbuil.2020.00082

    Article  Google Scholar 

  9. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008). https://doi.org/10.1016/j.jsv.2008.01.014

    Article  Google Scholar 

  10. Liu, C., Jing, X., Daley, S., Li, F.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57, 55–80 (2015). https://doi.org/10.1016/j.ymssp.2014.10.007

    Article  Google Scholar 

  11. Rao, S.S.: Mechanical Vibrations. Pearson Education, New York (2010)

    Google Scholar 

  12. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007). https://doi.org/10.1016/j.jsv.2006.10.011

    Article  Google Scholar 

  13. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315, 700–711 (2008). https://doi.org/10.1016/j.jsv.2007.12.019

    Article  Google Scholar 

  14. Hu, Z., Wang, X., Yao, H., Wang, G., Zheng, G.: Theoretical analysis and experimental identification of a vibration isolator with widely-variable stiffness. J. Vib. Acoust. (2018). https://doi.org/10.1115/1.4039537

    Article  Google Scholar 

  15. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound Vib. 346, 53–69 (2015). https://doi.org/10.1016/j.jsv.2015.02.005

    Article  Google Scholar 

  16. Liu, Y., Xu, L., Song, C., Gu, H., Ji, W.: Dynamic characteristics of a quasi-zero stifness vibration isolator with nonlinear stiffness and damping. Arch. Appl. Mech. 89, 1743–1759 (2019). https://doi.org/10.1007/s00419-019-01541-0

    Article  Google Scholar 

  17. Zhou, N., Liu, K.: A tunable high-static–low-dynamic stiffness vibration isolator. J. Sound Vib. 329, 1254–1273 (2010). https://doi.org/10.1016/j.jsv.2009.11.001

    Article  Google Scholar 

  18. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332, 3359–3376 (2013). https://doi.org/10.1016/j.jsv.2012.10.037

    Article  Google Scholar 

  19. Xu, D., Yu, Q., Zhou, J., Bishop, S.R.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332, 3377–3389 (2013). https://doi.org/10.1016/j.jsv.2013.01.034

    Article  Google Scholar 

  20. Wu, W., Chen, X., Shan, Y.: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. J. Sound Vib. 333, 2958–2970 (2014). https://doi.org/10.1016/j.jsv.2014.02.009

    Article  Google Scholar 

  21. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333, 1132–1148 (2014). https://doi.org/10.1016/j.jsv.2013.10.026

    Article  Google Scholar 

  22. Fulcher, B.A., Shahan, D.W., Haberman, M.R., Conner Seepersad, C., Wilson, P.S.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. (2014). https://doi.org/10.1115/1.4026888

    Article  Google Scholar 

  23. Sun, X., Jing, X., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333, 2404–2420 (2014). https://doi.org/10.1016/j.jsv.2013.12.025

    Article  Google Scholar 

  24. Sun, X., Jing, X.: Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mech. Syst. Signal Process. 66–67, 723–742 (2016). https://doi.org/10.1016/j.ymssp.2015.05.026

    Article  Google Scholar 

  25. Jing, X., Zhang, L., Feng, X., Sun, B., Li, Q.: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech. Syst. Signal Process. 118, 317–339 (2019). https://doi.org/10.1016/j.ymssp.2018.09.004

    Article  Google Scholar 

  26. Liu, C., Jing, X., Li, F.: Vibration isolation using a hybrid lever-type isolation system with an X-shape supporting structure. Int. J. Mech. Sci. 98, 169–177 (2015). https://doi.org/10.1016/j.ijmecsci.2015.04.012

    Article  Google Scholar 

  27. Sun, X., Jing, X.: A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band. Mech. Syst. Signal Process. 80, 166–188 (2016). https://doi.org/10.1016/j.ymssp.2016.04.011

    Article  Google Scholar 

  28. Liu, C., Jing, X., Chen, Z.: Band stop vibration suppression using a passive X-shape structured lever-type isolation system. Mech. Syst. Signal Process. 68–69, 342–353 (2016). https://doi.org/10.1016/j.ymssp.2015.07.018

    Article  Google Scholar 

  29. Bian, J., Jing, X.: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure. Mech. Syst. Signal Process. 125, 21–51 (2019). https://doi.org/10.1016/j.ymssp.2018.02.014

    Article  Google Scholar 

  30. Yan, G., Zou, H., Wang, S., Zhao, L., Wu, Z., Zhang, W.: Bio-inspired toe-like structure for low-frequency vibration isolation. Mech. Syst. Signal Process. 162, 108010 (2022). https://doi.org/10.1016/j.ymssp.2021.108010

    Article  Google Scholar 

  31. Yan, G., Zou, H., Wang, S., Zhao, L., Gao, Q., Tan, T., Zhang, W.: Large stroke quasi-zero stiffness vibration isolator using three-link mechanism. J. Sound Vib. 478, 115344 (2020)

    Article  Google Scholar 

  32. Zhou, X., Sun, X., Zhao, D., Yang, X., Tang, K.: The design and analysis of a novel passive quasi-zero stiffness vibration isolator. J. Vib. Eng. Technol. 9, 225–245 (2021). https://doi.org/10.1007/s42417-020-00221-6

    Article  Google Scholar 

  33. Younesian, D., Alam, M.: Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Appl. Energy 197, 292–302 (2017). https://doi.org/10.1016/j.apenergy.2017.04.019

    Article  Google Scholar 

  34. Gatti, G.: Optimizing elastic potential energy via geometric nonlinear stiffness. Commun. Nonlinear Sci. Numer. Simulat. 103, 106035 (2021). https://doi.org/10.1016/j.cnsns.2021.106035

    Article  MathSciNet  MATH  Google Scholar 

  35. Belendez, T., Neipp, C., Belendez, A.: Large and small defections of a cantilever beam. Eur. J. Phys. 23, 371–379 (2002)

    Article  Google Scholar 

  36. Chen, L.: An integral approach for large deflection cantilever beams. Int. J. Nonlin. Mech. 45, 301–305 (2010). https://doi.org/10.1016/j.ijnonlinmec.2009.12.004

    Article  Google Scholar 

  37. Shvartsman, B.S.: Large deflections of a cantilever beam subjected to a follower force. J. Sound Vib. 304, 969–973 (2007). https://doi.org/10.1016/j.jsv.2007.03.010

    Article  Google Scholar 

  38. Cheng, C., Li, S., Wang, Y., Jiang, X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87, 2267–2279 (2016). https://doi.org/10.1007/s11071-016-3188-0

    Article  Google Scholar 

  39. Xiao, Z., Jing, X., Cheng, L.: The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J. Sound Vib. 332, 1335–1354 (2013). https://doi.org/10.1016/j.jsv.2012.11.001

    Article  Google Scholar 

  40. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

  41. Moraes, F.H., Silveira, M., Goncalves, P.: On the dynamics of a vibration isolator with geometrically nonlinear inerter. Nonlinear Dyn. 93, 1325–1340 (2018). https://doi.org/10.1007/s11071-018-4262-6

    Article  Google Scholar 

  42. Lv, Q., Yao, Z.: Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 79, 2325–2332 (2015). https://doi.org/10.1007/s11071-014-1814-2

    Article  MathSciNet  Google Scholar 

  43. Shaw, A.D., Gatti, G., Gonçalves, P.J.P., Tang, B., Brennan, M.J.: Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure. Mech. Syst. Signal Process. 152, 107354 (2021). https://doi.org/10.1016/j.ymssp.2020.107354

    Article  Google Scholar 

  44. Gatti, G., Shaw, A.D., Gonçalves, P.J.P., Brennan, M.J.: On the detailed design of a quasi-zero stiffness device to assist in the realization of a translational Lanchester damper. Mech. Syst. Signal Process. 164, 108258 (2022). https://doi.org/10.1016/j.ymssp.2021.108258

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all reviewers for their useful comments and suggestions to improve the quality of this paper.

Funding

Funding

This study was funded by the National Key R&D Program of China (2016YFC0802900), the National Natural Science Foundation of China (51905210), the Jilin Province Key R&D Program of China (20200401130GX) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of Hebei Province (E2020203174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingxuan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$${f}_{f1}=2{f}_{c1}$$
(A.1)
$${f}_{f2}=4\frac{{\tilde{u }}^{2}}{{\delta }^{2}-{\tilde{u }}^{2}}{f}_{c2}$$
(A.2)
$${f}_{f3}=\frac{2}{\delta }\left({\cos}{\beta }_{c}-{\sin}{\beta }_{c}\frac{\tilde{u }}{\sqrt{{\delta }^{2}-{\tilde{u }}^{2}}}\right){f}_{c3}$$
(A.3)
$${f}_{f4}=2\frac{{\delta }^{2}}{{\delta }^{2}-{\tilde{u }}^{2}}{f}_{c4}$$
(A.4)
$${\varepsilon }_{0}={\left.4{f}_{c2}\frac{{\tilde{u }}^{2}}{{\delta }^{2}-{\tilde{u }}^{2}}\right|}_{\tilde{u }=\tilde{u}_{0}}$$
(A.5)
$${\varepsilon }_{1}={\left.8{f}_{c2}\frac{{\delta }^{2}\tilde{u }}{{{(\delta }^{2}-{\tilde{u }}^{2})}^{2}}\right|}_{\tilde{u }=\tilde{u}_{0}}$$
(A.6)
$${\varepsilon }_{2}={\left.4{f}_{c2}\frac{{\delta }^{4}+3{\delta }^{2}{\tilde{u }}^{2}}{{{(\delta }^{2}-{\tilde{u }}^{2})}^{3}}\right|}_{\tilde{u }=\tilde{u}_{0}}$$
(A.7)
$${\varepsilon }_{3}={\left.2{f}_{c3}\frac{1}{\delta }\left({\cos}{\beta }_{c}-{\sin}{\beta }_{c}\frac{\tilde{u }}{\sqrt{{\delta }^{2}-{\tilde{u }}^{2}}}\right)\right|}_{\tilde{u }=\tilde{u}_{0}}$$
(A.8)
$${\varepsilon }_{4}={\left.-2{f}_{c3}\frac{1}{\delta }\left[\left({\sin}{\beta }_{c}+{\cos}{\beta }_{c}\frac{\tilde{u }}{\sqrt{{\delta }^{2}-{\tilde{u }}^{2}}}\right)\frac{d{\beta }_{c}}{{\mathrm{d}}\tilde{u }}+{\sin}{\beta }_{c}{\delta }^{2}{\left({\delta }^{2}-{\tilde{u }}^{2}\right)}^{-\frac{3}{2}}\right]\right|}_{\tilde{u }=\tilde{u}_{0}}$$
(A.9)
$${\varepsilon }_{5}={\left.-{f}_{c3}\frac{1}{\delta }\left[\left({\cos}{\beta }_{c}-{\sin}{\beta }_{c}\frac{\tilde{u }}{\Delta }\right){\left(\frac{d{\beta }_{c}}{{\mathrm{d}}\tilde{u }}\right)}^{2}+2{\cos}{\beta }_{c}{\delta }^{2}{\Delta }^{-3}\frac{d{\beta }_{c}}{{\mathrm{d}}\tilde{u }}+\left({\sin}{\beta }_{c}+{\cos}{\beta }_{c}\frac{\tilde{u }}{\Delta }\right)\frac{{d}^{2}{\beta }_{c}}{d{\tilde{u }}^{2}}+3{\sin}{\beta }_{c}{\delta }^{2}{\Delta }^{-5}\tilde{u }\right]\right|}_{\tilde{u }=\tilde{u}_{0}}$$
(A.10)

where \(\Delta =\sqrt{{\delta }^{2}-\tilde{u}^{2}}\).

$${\varepsilon }_{6}={\left.2{f}_{c4}\frac{{\delta }^{2}}{{\delta }^{2}-{\tilde{u }}^{2}}\right|}_{\tilde{u }=\tilde{u}_{0}}$$
(A.11)
$${\varepsilon }_{7}={\left.4{f}_{c4}\frac{{\delta }^{2}\tilde{u }}{{{(\delta }^{2}-{\tilde{u }}^{2})}^{2}}\right|}_{\tilde{u }=\tilde{u}_{0}}$$
(A.12)
$${\varepsilon }_{8}={\left.2{f}_{c4}\frac{{\delta }^{4}+3{\delta }^{2}{\tilde{u }}^{2}}{{{(\delta }^{2}-{\tilde{u }}^{2})}^{3}}\right|}_{\tilde{u }=\tilde{u}_{0}}$$
(A.13)

Appendix B

The equations for \(a\), \({a}_{0}\) and \(\varphi \) obtained by applying HBM are listed as below.

$$\left[\frac{8}{\pi }{\xi }_{c}\left({\mu }_{10}+{\mu }_{11}{a}_{0}+{\mu }_{12}{{a}_{0}}^{2}+\frac{1}{3}{\mu }_{12}{\mathrm{a}}^{2}\right)+2\mathrm{a\Omega }{\xi }_{v}\right]\mathrm{sin\varphi }-[\left({\varphi }_{1}+2{\varphi }_{2}{a}_{0}+3{\varphi }_{3}{{a}_{0}}^{2}+4{{{\varphi }_{4}a}_{0}}^{3}+{{5{\varphi }_{5}a}_{0}}^{4})\mathrm{a}+\frac{3}{4}\left({\varphi }_{3}+4{{\varphi }_{4}a}_{0}+10{\varphi }_{5}{{a}_{0}}^{2}\right){\mathrm{a}}^{3}+\frac{5}{8}{{\varphi }_{5}\mathrm{a}}^{5}-\mathrm{a}{\Omega }^{2}\right]\mathrm{cos\varphi }+{\Omega }^{2}{z}_{0}=0$$
(B.1)
$$\left[\frac{8}{\pi }{\xi }_{c}\left({\mu }_{10}+{\mu }_{11}{\mathrm{a}}_{0}+{\mu }_{12}{{\mathrm{a}}_{0}}^{2}+\frac{1}{3}{\mu }_{12}{\mathrm{a}}^{2}\right)+2\mathrm{a\Omega }{\xi }_{v}\right]\mathrm{cos\varphi }+[({\varphi }_{1}+2{\varphi }_{2}{a}_{0}+3{\varphi }_{3}{{a}_{0}}^{2}+4{{{\varphi }_{4}a}_{0}}^{3}+{{5{\varphi }_{5}a}_{0}}^{4})a+\frac{3}{4}\left({\varphi }_{3}+4{{\varphi }_{4}a}_{0}+10{\varphi }_{5}{{a}_{0}}^{2}\right){\mathrm{a}}^{3}+\frac{5}{8}{{\varphi }_{5}\mathrm{a}}^{5}-\mathrm{a}{\Omega }^{2}]\mathrm{sin\varphi }=0$$
(B.2)
$${\varphi }_{1}{a}_{0}+{\varphi }_{2}{{a}_{0}}^{2}+{{{\varphi }_{3}a}_{0}}^{3}+{\varphi }_{4}{{a}_{0}}^{4}+{\varphi }_{5}{{a}_{0}}^{5}+\frac{1}{2}({\varphi }_{2}+3{\varphi }_{3}{a}_{0}+6{\varphi }_{4}{{a}_{0}}^{2}+10{\varphi }_{5}{{a}_{0}}^{3}){a}^{2}+\frac{3}{8}\left({\varphi }_{4}+5{{\varphi }_{5}a}_{0}\right){a}^{4}=0$$
(B.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhao, D., Sun, X. et al. An asymmetric quasi-zero stiffness vibration isolator with long stroke and large bearing capacity. Nonlinear Dyn 108, 1903–1930 (2022). https://doi.org/10.1007/s11071-022-07300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07300-1

Keywords

Navigation