Skip to main content
Log in

A stochastic turbidostat model with Ornstein-Uhlenbeck process: dynamics analysis and numerical simulations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many turbidostat models are affected by environmental noise due to various complicated and uncertain factors, and Ornstein-Uhlenbeck process is a more effective and precise way. We formulate a stochastic turbidostat system incorporating Ornstein-Uhlenbeck process in this paper and develop dynamical behavior for the stochastic model, which includes the existence and uniqueness of globally positive equilibrium, sufficient conditions of the extinction, the existence of a unique stationary distribution and an expression of density function of quasi-stationary distribution around the positive solution of the deterministic model. The results indicate that the weaker volatility intensity can ensure the existence and uniqueness of the stationary distribution, and the stronger reversion speed can lead to the extinction of microorganisms. Numerical simulations verify the validity of the analysis results, which assess the influence of the speed of reversion and the intensity of volatility on the long-term behavior of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availablity statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Li, Z., Chen, L.: Periodic solution of a turbidostat model with impulsive state feedback control. Nonlinear Dyn. 58(3), 525–538 (2009)

    Article  MathSciNet  Google Scholar 

  2. Zhong, Z., Wang, T., Chen, L.: Dynamic analysis of a turbidostat model with the feedback control. Commun. Nonlinear Sci. Numer. Simul. 15(4), 1028–1035 (2010)

    Article  MathSciNet  Google Scholar 

  3. Yao, Y.: Dynamics of a delay turbidostat system with contois growth rate. Math. Biosci. Eng. 16(1), 56–77 (2018)

  4. Yu, M., Lo, W.: Dynamics of microorganism cultivation with delay and stochastic perturbation. Nonlinear Dyn. 101(6), 501–519 (2020)

    MathSciNet  Google Scholar 

  5. Yu, M., Lo, W.: Stochastic dynamics of populations with refuge in polluted turbidostat. Chaos Solitons Fractals 147(1), 110963 (2021)

  6. Yu, M., Li, Z., Xiang, H., et al.: Dynamical analysis of a stochastic multispecies turbidostat model. Complexity (2019). https://doi.org/10.1155/2019/4681205

  7. Zhang, X., Yuan, R.: A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function. Appl. Math. Comput. (2021). 394: https://doi.org/10.1016/j.amc.2020.125833

  8. Wang, W., Cai, Y., Ding, Z., et al.: A stochastic differential equation SIS epidemic model incorporating Ornstein-Uhlenbeck process. Physica A 509, 921–936 (2018)

    Article  MathSciNet  Google Scholar 

  9. Dixit, A., Pindyck, R.: Investment under Uncertainty. Princeton University Press, Princeton 39(5), 659–681 (1994)

    MathSciNet  Google Scholar 

  10. Wu, F., Mao, X., Kan, C.: A highly sensitive mean-reverting process in finance and the Euler-Maruyama approximations. J. Math. Anal. Appl. 348(1), 540–554 (2008)

    Article  MathSciNet  Google Scholar 

  11. Zhou, B., Jiang, D., Dai, Y., et al.: Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies. Chaos Solitons Fractals (2021). https://doi.org/10.1016/j.chaos.2020.110601

  12. Rudnicki, R., Pichór, K.: Influence of stochastic perturbation on prey-predator systems. Math. Biosci. 206(1), 108–119 (2007)

    Article  MathSciNet  Google Scholar 

  13. Bao, K., Rong, L., Zhang, Q.: Analysis of a stochastic SIRS model with interval parameters. Discret. Contin. Dyn. Syst. B 24(9), 4827–4849 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Mao, X.: Stochastic differential equations and applications, 2nd edn. Horwood Publishing, Sawston (1997)

    MATH  Google Scholar 

  15. Rudnicki, R., Pichór, K., Tyran-Kamińska, M.: Markov semigroups and their applications. Lect. Notes Phys. 597, 215–238 (2002)

    Article  Google Scholar 

  16. Pichór, K., Rudnicki, R.: Stability of Markov semigroups and applications to parabolic systems. J. Math. Anal. Appl. 215, 56–74 (1997)

    Article  MathSciNet  Google Scholar 

  17. Ben Arous, G., Léandre, R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale (II). Probab. Theory Relat. Fields. 90, 377–402 (1991)

    Article  Google Scholar 

  18. Higham, D.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 433, 525–546 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported by the Natural Science Foundation of China (No. 11871473), Shandong Provincial Natural Science Foundation (Nos. ZR2019MA010, ZR2019MA006, ZR2020MA039) and the Fundamental Research Funds for the Central Universities (No. 19CX02055A).

Author information

Authors and Affiliations

Authors

Contributions

DJ designed the research and methodology. XM wrote the original draft. All authors read and approved the final manuscript.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Jiang, D., Hayat, T. et al. A stochastic turbidostat model with Ornstein-Uhlenbeck process: dynamics analysis and numerical simulations. Nonlinear Dyn 107, 2805–2817 (2022). https://doi.org/10.1007/s11071-021-07093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07093-9

Keywords

Navigation