Skip to main content
Log in

Numerical simulation on a limit cycle oscillation of a rectangular sheet in three-dimensional flow: influence of vortex element model on post-critical behavior

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The flutter of thin elastic plates (sheets) in a fluid flow is an interesting nonlinear problem, as well as an important engineering problem, because the sheets are used in many industrial applications. A detailed understanding of flutter characteristics and sustaining mechanism of limit cycle oscillation (LCO) is important to suppress the flutter. In this study, a nonlinear analysis on a LCO of rectangular sheets in a three-dimensional uniform fluid flow using the nonlinear beam model and vortex-lattice method is performed. The influence of the vortex element model of the vortex-lattice method on the post-critical behavior is investigated in detail. Moreover, fluid–structure interaction simulations are performed using computational fluid dynamics and computational structural dynamics to examine the flow field and pressure distributions acting on a sheet surface in detail. It is found that flow separation around the side edges of a fluttering sheet can affect the post-critical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Paidoussis, M. P.: Fluid-Structure Interactions. Slender Structures and Axial Flow, vol. 2. Elsevier, Amsterdam (2016)

  2. Lee, H.G., Lee, D.G.: Design of a large LCD panel handling air conveyor with minimum air consumption. Mech. Math. Theory. 41(7), 790–806 (2006)

    Article  MATH  Google Scholar 

  3. Watanabe, Y., Suzuki, S., Sugihara, M., Sueoka, Y.: An experimental study of paper flutter. J. Fluids Struct. 16(4), 529–542 (2002)

    Article  Google Scholar 

  4. Watanabe, Y., Isogai, K., Suzuki, S., Sugihara, M.: A theoretical study of paper flutter. J. Fluids Struct. 16(4), 543–560 (2002)

    Article  Google Scholar 

  5. Taneda, S.: Waving motion of flags. J. Phys. Soc. Jpn. 24(2), 392–401 (1968)

    Article  Google Scholar 

  6. Datta, S.K., Gottenberg, W.G.: Instability of an elastic strip hanging in an airstream. J. Appl. Mech. 42(1), 195–198 (1975)

    Article  MATH  Google Scholar 

  7. Kornecki, A., Dowell, E.H., O’Brien, J.: On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J. Sound and Vib. 47(2), 163–178 (1976)

    Article  MATH  Google Scholar 

  8. Huang, L.: Flutter of cantilevered plates in axial flow. J. Fluids Struct. 9(2), 127–147 (1995)

    Article  Google Scholar 

  9. Yamaguchi, N., Sekiguchi, T., Yokota, K., Tsujimoto, Y.: Flutter limits and behaviors of a flexible thin sheet in high-speed flow—II: Experimental results and predicted behaviors for low mass ratios. ASME J. Fluids Eng. 122(1), 74–83 (2000)

    Article  Google Scholar 

  10. Tang, D.M., Yamamoto, H., Dowell, E.H.: Flutter and limit cycle oscillation of two-dimensional panels in three-dimensional axial flow. J. Fluids Struct. 17(2), 225–242 (2003)

    Article  Google Scholar 

  11. Lemaitre, C., Hémon, P., de Langre, E.: Instability of a long ribbon hanging in axial air flow. J. Fluids Struct. 20(7), 913–925 (2005)

    Article  Google Scholar 

  12. Shelley, M., Vandenberghe, N., Zhang, J.: Heavy flags undergo spontaneous oscillations in flowing water. Phys. Rev. Lett. 94, 094302 (2005).

  13. Éloy, C., Lagrange, R., Souilliez, C., Schouveiler, L.: Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611, 97–106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Morris-Thomas, M.T., Steen, S.: Experiments on the stability and drag of a flexible sheet under in-plane tension in uniform flow. J. Fluids Struct. 25(5), 815–830 (2009)

    Article  Google Scholar 

  15. Schouveiler, L., Éloy, C.: Coupled flutter of parallel plates. Phys. Fluids 21(8), 081703 (2009)

  16. Éloy, C., Kofman, N., Schouveiler, L.: The origin of hysteresis in the flag instability. J. Fluid Mech. 691, 583–593 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gibbs, C.S., Wang, I., Dowell, E.H.: Theory and experiment for flutter of a rectangular plate with a fixed leading edge in three-dimensional axial flow. J. Fluids Struct. 34, 68–83 (2012)

    Article  Google Scholar 

  18. Zhao, W., Païdoussis, M.P., Tang, L., Liu, M., Jiang, J.: Theoretical and experimental investigations of the dynamics of cantilevered flexible plates subjected to axial flow. J. Sound Vib. 331(3), 575–587 (2012)

    Article  Google Scholar 

  19. Chen, M., Jia, L., Wu, Y., Yin, X., Ma, Y.: Bifurcation and chaos of a flag in an inviscid flow. J. Fluids Struct. 45, 124–137 (2014)

    Article  Google Scholar 

  20. Hiroaki, K., Watanabe, M., Morita, R.: Flutter analysis and experiments of a rectangular sheet supported by a wire. In: Proceeding of the ASME 2015 Pressure Vessels and Piping Conference Volume 4: Fluid–Structure Interaction. Boston, Massachusetts, USA. July 19–23 (2015)

  21. Watanabe, M., Hasegawa, A., Hara, K., Gonzalez, M., Cuadrado, J.: Three dimensional flutter analysis of a rectangular sheet based on the unsteady lifting surface theory and wind-tunnel experiments. Trans. JSME. https://doi.org/10.1299/transjsme.16-00170 (2016) (in Japanese)

  22. Theodorsen, T.: General theory of aerodynamics instability and the mechanism of flutter. NACA Technical Report No. 496 (1935)

  23. Manela, A., Howe, M.S.: On the stability and sound of an unforced flag. J. Sound Vib. 321(3–5), 994–1006 (2009)

    Article  Google Scholar 

  24. Yamaguchi, N., Yokota, K., Tsujimoto, Y.: Flutter limits and behaviors of a flexible thin sheet in high-speed flow—I: analytical method for prediction of the sheet behavior. ASME J. Fluids Eng. 122(1), 65–73 (2000)

    Article  Google Scholar 

  25. Howell, R.M., Lucey, A.D., Carpenter, P.W., Pitman, M.W.: Interaction between a cantilevered-free flexible plate and ideal flow. J. Fluids Struct. 25(3), 544–566 (2009)

    Article  Google Scholar 

  26. Guo, C.Q., Paidoussis, M.P.: Stability of rectangular plates with free side-edges in two-dimensional inviscid channel flow. ASME J. Appl. Mech. 67(1), 171–176 (2000)

    Article  MATH  Google Scholar 

  27. Éloy, C., Souilliez, C., Schouveiler, L.: Flutter of a rectangular plate. J. Fluids Struct. 23(6), 904–919 (2007)

    Article  Google Scholar 

  28. Sader, J.E., Cosse, J., Kim, D., Fan, B., Gharib, M.: Large-amplitude flapping of an inverted flag in a uniform steady flow—a vortex-induced vibration. J. Fluid Mech. 793, 524–555 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Goza, A., Colonius, T., Sader, S.E.: Global modes and nonlinear analysis of inverted-flag flapping. J. Fluid Mech. 857, 312–344 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tavallaeinejad, M., Legrand, M., Paidoussis, M.P.: Nonlinear dynamics of slender inverted flags in uniform steady flows. J. Sound and Vib. 467, 115048 (2020)

  31. Lighthill, M.J.: Large-amplitude elongated-body theory of fish locomotion. Proc. Royal Soc. Lond. B. 179(1055), 265–301 (1971)

    Google Scholar 

  32. Tavallaeinejad, M., Paidoussis, M.P., Legrand, M., Kheiri, M.: Instability and the post-critical behaviour of two-dimensional inverted flags in axial flow. J. Fluid Mech. 890, A14 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Polhamus, E.C.: A concept of the vortex lift of sharp-edge delta wings based on a leading-edge-suction analogy. NASA Tech. Note. TN D-3767 (1966)

  34. Tavallaeinejad, M., Paidoussis, M.P., Salinas-Flores, M., Legrand, M., Kheiri, M., Botez, R.M.: Flapping of heavy inverted flags: a fluid-elastic instability. J. Fluid Mech. 904, R5 (2020)

    Article  Google Scholar 

  35. Tavallaeinejad, M., Salinas-Flores, M., Paidoussis, M.P., Legrand, M., Kheiri, M., Botez, R.M.: Dynamics of inverted flags: experiments and comparison with theory. J. Fluids Struct. 101, 103199 (2021)

  36. Yadykin, Y.V., Tenetov, V., Levin, D.: The flow-induced vibration of a flexible strip hanging vertically in a parallel flow part 1: temporal aeroelastic instability. J. Fluids Struct. 15, 1167–1185 (2001)

    Article  Google Scholar 

  37. Wu, X., Kaneko, S.: Linear and nonlinear analysis of sheet flutter induced by leakage flow. J. Fluids Struct. 20, 927–948 (2005)

    Article  Google Scholar 

  38. Ghayesh, M.H., Amabili, M., Paidoussis, M.P.: Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis. Nonlinear Dyn. 70, 335–354 (2012)

    Article  MathSciNet  Google Scholar 

  39. Tang, L., Paidoussis, M.P.: On the instability and the post-critical behavior of two-dimensional cantilevered flexible plates in axial flow. J. Sound Vib. 305, 97–115 (2007)

    Article  Google Scholar 

  40. Tang, L., Paidoussis, M.P.: The dynamics of two-dimensional cantilevered plates with an additional spring support in axial flow. Nonlinear Dyn. 51, 429–438 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Michelin, S., Llewellyn Smith, S.G., Glover, B.J.: Vortex shedding model of a flapping flag. J. Fluid Mech. 617, 1–10 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Alben, S.: Simulating the dynamics of flexible bodies and vortex sheets. J. Comput. Phys. 228, 2587–2603 (2009)

  43. Hiroaki, K., Watanabe, M.: Three-dimensional nonlinear analysis and wind-tunnel experiment of flutter generated on a rectangular sheet in uniform flow. J. Fluids Struct. 101, 103226 (2020)

  44. Katz, J., Plotkin, A.: Low-speed aerodynamics, 2nd edn. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  45. Sawada, T., Hisada, T.: Fluid–structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method. Comput. Fluids. 36, 136–146 (2007)

    Article  MATH  Google Scholar 

  46. Huang, W., Shin, S.J., Sung, H.J.: Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226, 2206–2228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Huang, W., Sung, J.H.: Three-dimensional simulation of a flapping flag in a uniform flow. J. Fluid Mech. 653, 301–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Goza, A., Colonius, T.: A strongly-coupled immersed-boundary formulation for thin elastic structures. J. Comput. Phys. 336, 401–411 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, J., Childress, S., Libchaber, A., Shelly, M.: Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835–839 (2000)

    Article  Google Scholar 

  50. Semler, C., Li, G.X., Paidoussis, M.P.: The non-linear equations of motion of pipes conveying fluid. J. Sound Vib. 165, 577–599 (1994)

    Article  MATH  Google Scholar 

  51. Shirayama, S., Kuwahara, K., Mendez, R.: A new three-dimensional vortex method. AIAA Paper No. 85-1488, pp. 14–24 (1985)

  52. Nakanishi, Y., Kamemoto, K.: An examination of a vortex method for predicting unsteady separated flows around three-dimensional bodies. In: Tanaka, M., Brebbria, C. A., Shaw, R. (eds.) Advances in Boundary Elements Methods in Japan and USA, Computational Mechanics Publications, pp. 269–283 (1990)

  53. Semler, C., Gentleman, W.C., Paidoussis, M.P.: Numerical solutions of second order implicit non-linear ordinary differential equations. J. Sound Vib. 195, 553–574 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  54. Nakashima, M., Ono, K.: Study of bending propulsion mechanism (4th report, analysis of 3-joint model by 3-dimensional discrete vortex method). Trans. Jap. Soc. of Mech. Eng. Series B. 60, 4095–4101 (1994) [in Japanese]

  55. Tang, L., Païdoussis, M.P., Jiang, J.: Cantilevered flexible plates in axial flow: energy transfer and the concept of flutter-mill. J. Sound Vib. 326(1–2), 263–276 (2009)

    Article  Google Scholar 

  56. Tang, L., Paidoussis, M.P.: The influence of the wake on the stability of cantilevered flexible plates in axial flow. J. Sound Vib. 310, 512–526 (2008)

    Article  Google Scholar 

  57. Kamemoto, K.: On attractive features of the vortex method. In: Hafez, M., Oshima, K. (eds.) Computational Fluid Dynamics Review. Wiley, London, pp. 334–353 (1995)

Download references

Acknowledgements

The authors warmly thank Associate Prof. Kensuke Hara (Yokohama National University) and Dr. Masakazu Takeda for their helpful comments. Finally, we would like to thank Editage (www.editage.com) for English language editing.

Funding

This work was supported by Aoyama Gakuin University Research Institute grant program for creation of innovative research and the research Grant provided by CAT (Center for Advanced Technology) of Aoyama Gakuin University.

Author information

Authors and Affiliations

Authors

Contributions

Keiichi Hiroaki contributed to conceptualization, methodology, visualization, investigation, software, validation, writing—original draft; Yutaka Hayashi contributed to visualization, investigation, validation; Masahiro Watanabe contributed to conceptualization, methodology, visualization, investigation, writing——review and editing.

Corresponding author

Correspondence to Keiichi Hiroaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiroaki, K., Hayashi, Y. & Watanabe, M. Numerical simulation on a limit cycle oscillation of a rectangular sheet in three-dimensional flow: influence of vortex element model on post-critical behavior. Nonlinear Dyn 106, 2893–2917 (2021). https://doi.org/10.1007/s11071-021-06958-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06958-3

Keywords

Navigation