Skip to main content
Log in

Nonlinear dynamic responses of high-speed railway vehicles under combined self-excitation and forced excitation considering the influence of unsteady aerodynamic loads

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamic characteristics of a railway vehicle system under unsteady aerodynamic loads are examined in this study. A dynamic analysis model of the railway vehicle considering the influences of aerodynamic loads was established. The model not only considers the forced excitation effect of unsteady aerodynamic loads but also accounts for the effect of unsteady aerodynamic loads on the change of the wheel–rail contact normal forces as well as changes of the wheelset creep coefficients and creep forces/moments. Therefore, this model also considers the influences of unsteady aerodynamic loads on the self-excited vibration characteristics of the vehicle system. The time-history curves, phase trajectory diagrams, Poincaré sections, and Lyapunov exponents of the vehicle system running on a smooth straight track under unsteady aerodynamic loads were determined. The results show that when the critical speed is exceeded, the vehicle system usually performs quasi-periodic motion under unsteady aerodynamic loads, which is significantly different from the periodic motion under steady aerodynamic loads. In different cases, the amplitude and phase of motion are significantly different. The amplitude of the motions can be increased by more than 159%, and the difference of phase can be up to 173°. (The phase is almost reversed.) The dynamic responses of the vehicle system under unsteady aerodynamic loads contain abundant frequency components, including the frequency of the self-excited vibration, the frequency of the forced excitation, and combinations of their integer multiples. The vibration forms corresponding to the main harmonic components under unsteady and steady aerodynamic loads were compared, and the self-excited vibration component of the vehicle system under unsteady aerodynamic loads was identified. The variations in the critical speed with various parameter combinations were computed. The variation range of the critical velocity can reach 73%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The datasets of the current study are available from the corresponding author on reasonable request.

References

  1. Zhang, T., Dai, H.: Bifurcation analysis of high-speed railway wheel-set. Nonlinear Dyn. 83, 1511–1528 (2016). https://doi.org/10.1007/s11071-015-2425-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Wei, W., Yabuno, H.: Subcritical Hopf and saddle-node bifurcations in hunting motion caused by cubic and quintic nonlinearities: experimental identification of nonlinearities in a roller rig. Nonlinear Dyn. 98, 657–670 (2019). https://doi.org/10.1007/s11071-019-05220-1

    Article  Google Scholar 

  3. Uyulan, Ç., Gokasan, M., Bogosyan, S.: Stability and bifurcation analysis of the non-linear railway bogie dynamics. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 232, 2787–2802 (2017). https://doi.org/10.1177/0954406217727304

    Article  Google Scholar 

  4. Yan, Y., Zeng, J.: Hopf bifurcation analysis of railway bogie. Nonlinear Dyn. 92, 107–117 (2018). https://doi.org/10.1007/s11071-017-3634-7

    Article  Google Scholar 

  5. Kim, P., Seok, J.: Bifurcation analysis on the hunting behavior of a dual-bogie railway vehicle using the method of multiple scales. J. Sound Vib. 329, 4017–4039 (2010). https://doi.org/10.1016/j.jsv.2010.03.024

    Article  Google Scholar 

  6. Di Gialleonardo, E., Braghin, F., Bruni, S.: The influence of track modelling options on the simulation of rail vehicle dynamics. J. Sound Vib. 331, 4246–4258 (2012). https://doi.org/10.1016/j.jsv.2012.04.024

    Article  Google Scholar 

  7. True, H.: Multiple attractors and critical parameters and how to find them numerically: the right, the wrong and the gambling way. Veh. Syst. Dyn. 51, 443–459 (2013). https://doi.org/10.1080/00423114.2012.738919

    Article  Google Scholar 

  8. Iwnicki, S.D., Stichel, S., Orlova, A., Hecht, M.: Dynamics of railway freight vehicles. Veh. Syst. Dyn. 53, 995–1033 (2015). https://doi.org/10.1080/00423114.2015.1037773

    Article  Google Scholar 

  9. Zboinski, K., Dusza, M.: Bifurcation analysis of 4-axle rail vehicle models in a curved track. Nonlinear Dyn. 89, 863–885 (2017). https://doi.org/10.1007/s11071017-3489-y

    Article  Google Scholar 

  10. Zeng, X.-H., Wu, H., Lai, J., Yu, Y.: The effect of wheel set gyroscopic action on the hunting stability of high-speed trains. Veh. Syst. Dyn. 55, 924–944 (2017). https://doi.org/10.1080/00423114.2017.1293833

    Article  Google Scholar 

  11. Sun, J., Chi, M., Jin, X., Liang, S., Wang, J., Li, W.: Experimental and numerical study on carbody hunting of electric locomotive induced by low wheel–rail contact conicity. Veh. Syst. Dyn. 59, 203–223 (2021). https://doi.org/10.1080/00423114.2019.1674344

    Article  Google Scholar 

  12. Antolín, P., Zhang, N., Goicolea, J.M., Xia, H., Astiz, M.Á., Oliva, J.: Consideration of nonlinear wheel–rail contact forces for dynamic vehicle–bridge interaction in high-speed railways. J. Sound Vib. 332, 1231–1251 (2013). https://doi.org/10.1016/j.jsv.2012.10.022

    Article  Google Scholar 

  13. Xu, L., Zhai, W.: Stochastic analysis model for vehicle-track coupled systems subject to earthquakes and track random irregularities. J. Sound Vib. 407, 209–225 (2017). https://doi.org/10.1016/j.jsv.2017.06.030

    Article  Google Scholar 

  14. Sadeghi, J., Rabiee, S., Khajehdezfuly, A.: Effect of rail irregularities on ride comfort of train moving over ballast-less tracks. Int. J. Struct. Stab. Dyn. (2019). https://doi.org/10.1142/S0219455419500603

    Article  MathSciNet  Google Scholar 

  15. Yang, C.J., Xu, Y., Zhu, W.D., Fan, W., Zhang, W.H., Mei, G.M.: A three-dimensional modal theory-based Timoshenko finite length beam model for train-track dynamic analysis. J. Sound Vib. 479, 115363 (2020). https://doi.org/10.1016/j.jsv.2020.115363

    Article  Google Scholar 

  16. Cheng, Y.-C., Wu, P.-H.: Effects analysis of suspension parameters, different wheel conicities and wheel nominal rolling radii on the derailment safety and ride comfort. Int. J. Heavy Veh. Syst. 27, 519 (2020). https://doi.org/10.1504/IJHVS.2020.109291

    Article  Google Scholar 

  17. Bokaeian, V., Rezvani, M.A., Arcos, R.: Nonlinear impact of traction rod on the dynamics of a high-speed rail vehicle carbody. J. Mech. Sci. Technol. 34, 4989–5003 (2020). https://doi.org/10.1007/s12206-020-1104-5

    Article  Google Scholar 

  18. Dumitriu, M., Stănică, D.: Effect of the anti-yaw damper on carbody vertical vibration and ride comfort of railway vehicle. Appl. Sci. 10, 8167 (2020). https://doi.org/10.3390/app10228167

    Article  Google Scholar 

  19. Ma, C., Gao, L., Xin, T., Cai, X., Nadakatti, M.M., Wang, P.: The dynamic resonance under multiple flexible wheelset-rail interactions and its influence on rail corrugation for high-speed railway. J. Sound Vib. 498, 115968 (2021). https://doi.org/10.1016/j.jsv.2021.115968

    Article  Google Scholar 

  20. Keshtegar, B., Bagheri, M., Fei, C.-W., Lu, C., Taylan, O., Thai, D.-K.: Multi-extremum-modified response basis model for nonlinear response prediction of dynamic turbine blisk. Eng. Comput. (2021). https://doi.org/10.1007/s00366-020-01273-8

    Article  Google Scholar 

  21. Fei, C., Liu, H., Li, S., Li, H., An, L., Lu, C.: Dynamic parametric modeling-based model updating strategy of aeroengine casings. Chin. J. Aeronaut. (2021). https://doi.org/10.1016/j.cja.2020.10.036

    Article  Google Scholar 

  22. Fei, C., Liu, H., Patricia Liem, R., Choy, Y., Han, L.: Hierarchical model updating strategy of complex assembled structures with uncorrelated dynamic modes. Chin. J. Aeronaut. (2021). https://doi.org/10.1016/j.cja.2021.03.023

    Article  Google Scholar 

  23. Lu, C., Fei, C.-W., Feng, Y.-W., Zhao, Y.-J., Dong, X.-W., Choy, Y.-S.: Probabilistic analyses of structural dynamic response with modified Kriging-based moving extremum framework. Eng. Fail. Anal. 125, 105398 (2021). https://doi.org/10.1016/j.engfailanal.2021.105398

    Article  Google Scholar 

  24. Baker, C.: The flow around high speed trains. J. Wind Eng. Ind. Aerodyn. 98, 277–298 (2010). https://doi.org/10.1016/j.jweia.2009.11.002

    Article  Google Scholar 

  25. Noguchi, Y., Suzuki, M., Baker, C., Nakade, K.: Numerical and experimental study on the aerodynamic force coefficients of railway vehicles on an embankment in crosswind. J. Wind Eng. Ind. Aerodyn. 184, 90–105 (2019). https://doi.org/10.1016/j.jweia.2018.11.019

    Article  Google Scholar 

  26. Guo, Z., Liu, T., Chen, Z., Xia, Y., Li, W., Li, L.: Aerodynamic influences of bogie’s geometric complexity on high-speed trains under crosswind. J. Wind Eng. Ind. Aerodyn. 196, 104053 (2020). https://doi.org/10.1016/j.jweia.2019.104053

    Article  Google Scholar 

  27. Baker, C., Hemida, H., Iwnicki, S., Xie, G., Ongaro, D.: Integration of crosswind forces into train dynamic modelling. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 225, 154–164 (2011). https://doi.org/10.1177/2041301710392476

    Article  Google Scholar 

  28. Thomas, D., Berg, M., Diedrichs, B., Stichel, S.: Rail vehicle response to lateral carbody excitations imitating crosswind. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. (2013). https://doi.org/10.1177/0954409713496765

    Article  Google Scholar 

  29. Xu, L., Zhai, W.: A model for vehicle–track random interactions on effects of crosswinds and track irregularities. Veh. Syst. Dyn. 57, 444–469 (2019). https://doi.org/10.1080/00423114.2018.1469775

    Article  Google Scholar 

  30. Montenegro, P.A., Barbosa, D., Carvalho, H., Calçada, R.: Dynamic effects on a train-bridge system caused by stochastically generated turbulent wind fields. Eng. Struct. 211, 110430 (2020). https://doi.org/10.1016/j.engstruct.2020.110430

    Article  Google Scholar 

  31. Neto, J., Montenegro, P.A., Vale, C., Calçada, R.: Evaluation of the train running safety under crosswinds—a numerical study on the influence of the wind speed and orientation considering the normative Chinese Hat Model. Int. J. Rail Transp. (2020). https://doi.org/10.1080/23248378.2020.1780965

    Article  Google Scholar 

  32. Zeng, X.-H., Wu, H., Lai, J., Sheng, H.: Hunting stability of high-speed railway vehicles on a curved track considering the effects of steady aerodynamic loads. J. Vib. Control. 22, 4159–4175 (2016). https://doi.org/10.1177/1077546315571986

    Article  Google Scholar 

  33. Zeng, X.-H., Lai, J., Wu, H.: Hunting stability of high-speed railway vehicles under steady aerodynamic loads. Int. J. Struct. Stab. Dyn. 18, 1850093 (2018). https://doi.org/10.1142/S0219455418500931

    Article  MathSciNet  Google Scholar 

  34. Wu, H., Zeng, X.-H., Lai, J., Yu, Y.: Nonlinear hunting stability of high-speed railway vehicle on a curved track under steady aerodynamic load. Veh. Syst. Dyn. 58, 175–197 (2020). https://doi.org/10.1080/00423114.2019.1572202

    Article  Google Scholar 

  35. Zhai, W.: Vehicle–Track Coupled Dynamics, 4th edn. Science Press, Beijing (2015)

    Google Scholar 

  36. Kalker, J.: Three-dimensional elastic bodies in rolling contact, 1st edn. Kluwer Academic Publishers, Dordrecht, Netherland (1990). https://doi.org/10.1007/978-94-015-7889-9

  37. Hirotsu, T., Terada, K., Hiraishi, M., Yui, S.: Simulation of hunting of rail vehicles. The case using a compound circular wheel profile. JSME Int. J. Ser. Vib. Control Eng. Eng. Ind. 34, 396–403 (1991). https://doi.org/10.1299/jsmec1988.34.396

    Article  Google Scholar 

  38. Sun, J., Chi, M., Cai, W., Jin, X.: Numerical investigation into the critical speed and frequency of the hunting motion in railway vehicle system. Math. Probl. Eng. 2019, 7163732 (2019). https://doi.org/10.1155/2019/7163732

    Article  MathSciNet  MATH  Google Scholar 

  39. Huang, C., Zeng, J., Liang, S.: Influence of system parameters on the stability limit of the undisturbed motion of a motor bogie. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 228, 522–534 (2014). https://doi.org/10.1177/0954409713488099

    Article  Google Scholar 

  40. Ejiri, K., Michitsuji, Y., Suda, Y., Lin, S., Sugiyama, H.: Running stability analysis of independently rotating wheelset with negative tread conicity using scaled-model roller rig. JSME 79, 4950–4962 (2013). https://doi.org/10.1299/kikaic.79.4950

    Article  Google Scholar 

  41. Gao, H.: Study on rigid-flexible coupling dynamic simulation method and platform for railway vehicle. 2013. Ph. D Thesis (China: Southwest Jiaotong University)

  42. Xi, Y., Mao, J., Gao, L., Yang, G.: Aerodynamic force/moment for high-speed train in crosswind field based on DES. Zhongnan Daxue Xuebao (Ziran Kexue)/J. Cent. South Univ. Sci. Technol. 46, 1129–1139 (2015)

    Google Scholar 

  43. Nayfeh, A., Balachandran, B.: Applied nonlinear dynamics: analytical, computational, and experimental methods. Wiley Ser. Nonlinear Sci. (2008). https://doi.org/10.1002/9783527617548.ch6

    Article  MATH  Google Scholar 

  44. Brown, R., Bryant, P., Abarbanel, H.: Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A. 43, 2787–2806 (1991). https://doi.org/10.1103/PhysRevA.43.2787

    Article  MathSciNet  Google Scholar 

  45. Xu, L., Chen, Z., Zhai, W.: An advanced vehicle–slab track interaction model considering rail random irregularities. J. Vib. Control. 24, 4592–4603 (2017). https://doi.org/10.1177/1077546317731005

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 11672306, 51805522), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Number XDB22020101), the 13th Five-year Informatization Plan of the Chinese Academy of Sciences (Grant Number XXH13506), and the National Key R&D Program of China (Grant Number 2016YFB1200602).

Author information

Authors and Affiliations

Authors

Contributions

X-HZ contributed to conceptualization, methodology, formal analysis, writing—original draft, writing—review and editing, supervision, and funding acquisition. H-MS contributed to software, validation, formal analysis, investigation, data curation, writing—original draft, and visualization. HW performed formal analysis, data curation, and writing—review and editing.

Corresponding author

Correspondence to Han Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Details of equations of motion

The force diagrams and dynamics equations of each component of the vehicle system are listed in detail below [35].

For the i-th wheelset (i = 1–4) (Fig. 

Fig. 26
figure 26

Schematic diagram of the force of the i-th wheelset

26).

For the front frame (n = 1) (Fig. 

Fig. 27
figure 27

Schematic diagram of the force of the front frame

27).

The rear frame (n = 2) is similar to the front frame.

For the car body (Fig. 

Fig. 28
figure 28

Schematic diagram of force of the car body

28).

The primary suspension longitudinal force is as follows (i = 1–4):

$$ F_{{x{\text{f}}\left( {{\text{L}},{\text{R}}} \right)i}} = K_{{{\text{p}}x}} \left( { \pm d_{{\text{w}}} \psi_{{{\text{f}}n}} + H_{{{\text{fw}}}} \beta_{{{\text{f}}n}} \mp d_{{\text{w}}} \psi_{{{\text{w}}i}} } \right) + C_{{{\text{p}}x}} \left( { \pm d_{{\text{w}}} \dot{\psi }_{{{\text{f}}n}} + H_{{{\text{fw}}}} \dot{\beta }_{{{\text{f}}n}} \mp d_{{\text{w}}} \dot{\psi }_{{{\text{w}}i}} } \right) $$
(A.1)

n = 1 when i = 1, 2 and n = 2 when i = 3, 4. The subscript i = 1–4 represents the i-th wheelset, and n = 1–2 represents the n-th frame, where the upper and lower sign (‘ + ’ or (‘ − ’) of ± and ∓ apply to the left and right wheel, respectively. This convention is also followed in similar cases later.

The primary suspension lateral force is as follows (i = 1–4):

$$ F_{{y{\text{f}}\left( {{\text{L}},{\text{R}}} \right)i}} = K_{{{\text{p}}y}} \left[ {y_{{{\text{w}}i}} - y_{{{\text{f}}n}} + H_{{{\text{fw}}}} \phi_{{{\text{f}}n}} + \left( { - 1} \right)^{i} l_{{\text{f}}} \psi_{{{\text{f}}n}} } \right] + C_{{{\text{p}}y}} \left[ {\dot{y}_{{{\text{w}}i}} - \dot{y}_{{{\text{f}}n}} + H_{{{\text{fw}}}} \dot{\phi }_{{{\text{f}}n}} + \left( { - 1} \right)^{i} l_{{\text{f}}} \dot{\psi }_{{{\text{f}}n}} } \right]. $$
(A.2)

The primary suspension vertical force is as follows (i = 1–4):

$$ \begin{aligned} F_{{z{\text{f}}\left( {{\text{L}},{\text{R}}} \right)i}} & = K_{{{\text{p}}z}} \left[ {z_{{{\text{f}}n}} - z_{{{\text{w}}i}} + \left( { - 1} \right)^{i} l_{{\text{f}}} \beta_{{{\text{f}}n}} \pm d_{{\text{w}}} \phi_{{{\text{w}}i}} \mp d_{{\text{w}}} \phi_{{{\text{f}}n}} } \right] \\ & \quad + \;C_{{{\text{p}}z}} \left[ {\dot{z}_{{{\text{f}}n}} - \dot{z}_{{{\text{w}}i}} + \left( { - 1} \right)^{i} l_{{\text{f}}} \dot{\beta }_{{{\text{f}}n}} \pm d_{{\text{w}}} \dot{\phi }_{{{\text{w}}i}} \mp d_{{\text{w}}} \dot{\phi }_{{{\text{f}}n}} } \right] + \frac{{\left( {2M_{{\text{f}}} + M_{{\text{c}}} } \right)g}}{8}. \\ \end{aligned} $$
(A.3)

The secondary suspension longitudinal force is as follows (i = 1, 2):

$$ F_{{x{\text{t}}\left( {{\text{L}},{\text{R}}} \right)i}} = K_{{{\text{s}}x}} \left( {H_{{{\text{cb}}}} \beta_{{\text{c}}} + H_{{{\text{bf}}}} \beta_{{{\text{f}}i}} \pm d_{{\text{s}}} \psi_{{\text{c}}} \mp d_{{\text{s}}} \psi_{{{\text{f}}i}} } \right) + C_{{{\text{s}}x}} \left( {H_{{{\text{cb}}}} \dot{\beta }_{{\text{c}}} + H_{{{\text{bf}}}} \dot{\beta }_{{{\text{f}}i}} \pm d_{{\text{s}}} \dot{\psi }_{{\text{c}}} \mp d_{{\text{s}}} \dot{\psi }_{{{\text{f}}i}} } \right). $$
(A.4)

The secondary suspension lateral force is as follows (i = 1, 2):

$$ \begin{aligned} F_{{y{\text{t}}\left( {{\text{L}},{\text{R}}} \right)i}} & = K_{{{\text{s}}y}} \left[ {y_{{{\text{f}}i}} - y_{{\text{c}}} + H_{{{\text{bf}}}} \phi_{{{\text{f}}i}} + H_{{{\text{cb}}}} \phi_{{\text{c}}} + \left( { - 1} \right)^{i} l_{{\text{c}}} \psi_{{\text{c}}} } \right] \\ & \quad + \;C_{{{\text{s}}y}} \left[ {\dot{y}_{{{\text{f}}i}} - \dot{y}_{{\text{c}}} + H_{{{\text{bf}}}} \dot{\phi }_{{{\text{f}}i}} + H_{{{\text{cb}}}} \dot{\phi }_{{\text{c}}} + \left( { - 1} \right)^{i} l_{{\text{c}}} \dot{\psi }_{{\text{c}}} } \right]. \\ \end{aligned} $$
(A.5)

The secondary suspension vertical force is as follows (i = 1, 2):

$$ \begin{aligned} F_{{z{\text{t}}\left( {{\text{L}},{\text{R}}} \right)i}} & = K_{{{\text{s}}z}} \left[ {z_{{\text{c}}} - z_{{{\text{f}}i}} \pm d_{{\text{s}}} \phi_{{{\text{f}}i}} \mp d_{{\text{s}}} \phi_{{\text{c}}} + \left( { - 1} \right)^{i} l_{{\text{c}}} \beta_{{\text{c}}} } \right] \\ & \quad + \;C_{{{\text{s}}z}} \left[ {\dot{z}_{{\text{c}}} - \dot{z}_{{{\text{f}}i}} \pm d_{{\text{s}}} \dot{\phi }_{{{\text{f}}i}} \mp d_{{\text{s}}} \dot{\phi }_{{\text{c}}} + \left( { - 1} \right)^{i} l_{{\text{c}}} \dot{\beta }_{{\text{c}}} } \right] + \frac{{M_{{\text{c}}} g}}{4}. \\ \end{aligned} $$
(A.6)

The secondary lateral damper force is as follows (i = 1, 2):

$$ F_{{y{\text{hx}}\left( {\text{L,R}} \right)i}} = K_{{{\text{hx}}}} \left( {y_{{{\text{f}}i}} + H_{{{\text{fhx}}}} \phi_{{{\text{f}}i}} - y_{{{\text{hx}}\left( {\text{L,R}} \right)i}} \pm E\psi_{{{\text{f}}i}} } \right). $$
(A.7)

The secondary yaw damper force is as follows (i = 1, 2):

$$ F_{{{\text{sx}}\left( {\text{L,R}} \right)i}} = K_{{{\text{sx}}1}} \left( { - y_{{{\text{sx}}\left( {\text{L,R}} \right)i}} \pm d_{{{\text{sx}}}} \psi_{{{\text{f}}i}} - H_{{{\text{fsx}}}} \beta_{{{\text{f}}i}} } \right). $$
(A.8)

The bump stop force is as follows (i = 1, 2):

$$ F_{{y{\text{zd}}i}} = K_{{{\text{zd}}}} \left( {y_{{{\text{f}}i}} - y_{{\text{c}}} + H_{{{\text{fzd}}}} \phi_{{{\text{f}}i}} + H_{{{\text{czd}}}} \phi_{{\text{c}}} + \left( { - 1} \right)^{i} l_{{{\text{zd}}}} \psi_{{\text{c}}} } \right). $$
(A.9)

For the wheelset (i = 1–4),

$$ M_{{\text{w}}} \ddot{y}_{{{\text{w}}i}} = - F_{{y{\text{fL}}i}} - F_{{y{\text{fR}}i}} + F_{{{\text{L}}yi}} + F_{{{\text{R}}yi}} + N_{{{\text{L}}yi}} + N_{{{\text{R}}yi}} $$
(A.10)
$$ \begin{gathered} I_{{{\text{w}}z}} \ddot{\psi }_{{{\text{w}}i}} + I_{{{\text{w}}y}} \dot{\phi }_{{{\text{w}}i}} \left( {\dot{\beta }_{{{\text{w}}i}} - \frac{V}{{r_{0} }}} \right) = a_{0} \left( {F_{{{\text{L}}xi}} - F_{{{\text{R}}xi}} } \right) + a_{0} \psi_{{{\text{w}}i}} \left( {F_{{{\text{L}}yi}} - F_{{{\text{R}}yi}} + N_{{{\text{L}}yi}} - N_{{{\text{R}}yi}} } \right) \\ + M_{{{\text{L}}zi}} + M_{{{\text{R}}zi}} + d_{{\text{w}}} \left( {F_{{x{\text{fL}}i}} - F_{{x{\text{fR}}i}} } \right) + a_{0} \left( {N_{{{\text{L}}xi}} - N_{{{\text{R}}xi}} } \right) \\ \end{gathered} $$
(A.11)
$$ \begin{aligned} I_{{{\text{w}}y}} \ddot{\beta }_{{{\text{w}}i}} & = r_{{{\text{L}}i}} F_{{{\text{L}}xi}} + r_{{{\text{L}}i}} \psi_{{{\text{w}}i}} \left( {F_{{{\text{L}}yi}} + N_{{{\text{L}}yi}} } \right) + r_{{{\text{R}}i}} F_{{{\text{R}}xi}} + r_{{{\text{R}}i}} \psi_{{{\text{w}}i}} \left( {F_{{{\text{R}}yi}} + N_{{{\text{R}}yi}} } \right) \\ & \quad + \;M_{{{\text{L}}yi}} + M_{{{\text{R}}yi}} + r_{{{\text{L}}i}} N_{{{\text{L}}xi}} + r_{{{\text{R}}i}} N_{{{\text{R}}xi}} . \\ \end{aligned} $$
(A.12)

For the frame (i = 1, 2),

$$ M_{{\text{f}}} \ddot{y}_{{{\text{f}}i}} = F_{{y{\text{fL}}\left( {2i - 1} \right)}} + F_{{y{\text{fL}}\left( {2i} \right)}} - F_{{y{\text{tL}}i}} + F_{{y{\text{fR}}\left( {2i - 1} \right)}} + F_{{y{\text{fR}}\left( {2i} \right)}} - F_{{y{\text{tR}}i}} - F_{{y{\text{hxL}}i}} - F_{{y{\text{hxR}}i}} $$
(A.13)
$$ M_{{\text{f}}} \ddot{z}_{{{\text{f}}i}} = F_{{z{\text{tL}}i}} - F_{{z{\text{fL}}\left( {2i - 1} \right)}} - F_{{z{\text{fL}}\left( {2i} \right)}} + F_{{z{\text{tR}}i}} - F_{{z{\text{fR}}\left( {2i - 1} \right)}} - F_{{z{\text{fR}}\left( {2i} \right)}} + M_{{\text{f}}} g $$
(A.14)
$$ \begin{aligned} I_{{{\text{f}}x}} \dot{\phi }_{{{\text{f}}i}} & = - \left[ {F_{{y{\text{fL}}\left( {2i - 1} \right)}} + F_{{y{\text{fL}}\left( {2i} \right)}} + F_{{y{\text{fR}}\left( {2i - 1} \right)}} + F_{{y{\text{fR}}\left( {2i} \right)}} } \right]H_{{{\text{fw}}}} \\ & \quad + \;\left[ {F_{{z{\text{fL}}\left( {2i - 1} \right)}} + F_{{z{\text{fL}}\left( {2i} \right)}} - F_{{z{\text{fR}}\left( {2i - 1} \right)}} - F_{{z{\text{fR}}\left( {2i} \right)}} } \right]d_{{\text{w}}} + \left( {F_{{z{\text{tR}}i}} - F_{{z{\text{tL}}i}} } \right)d_{{\text{s}}} \\ & \quad - \;\left( {F_{{y{\text{tL}}i}} + F_{{y{\text{tR}}i}} } \right)H_{{{\text{bf}}}} - \left( {F_{{y{\text{hxL}}i}} + F_{{y{\text{hxR}}i}} } \right)H_{{{\text{fhx}}}} - F_{{y{\text{zd}}i}} H_{{{\text{fzd}}}} + M_{{{\text{r}}i}} \\ \end{aligned} $$
(A.15)
$$ \begin{aligned} I_{{{\text{f}}y}} \ddot{\beta }_{{{\text{f}}i}} & = \left[ {F_{{z{\text{fL}}\left( {2i - 1} \right)}} - F_{{z{\text{fL}}\left( {2i} \right)}} + F_{{z{\text{fR}}\left( {2i - 1} \right)}} - F_{{z{\text{fR}}\left( {2i} \right)}} } \right]l_{{\text{f}}} - \left( {F_{{x{\text{tL}}i}} + F_{{x{\text{tR}}i}} } \right)H_{{{\text{bf}}}} \\ & \quad - \;\left[ {F_{{x{\text{fL}}\left( {2i - 1} \right)}} + F_{{x{\text{fL}}\left( {2i} \right)}} + F_{{x{\text{fR}}\left( {2i - 1} \right)}} + F_{{x{\text{fR}}\left( {2i} \right)}} } \right]H_{{{\text{fw}}}} + \left( {F_{{{\text{sxL}}i}} + F_{{{\text{sxR}}i}} } \right)H_{{{\text{fsx}}}} \\ \end{aligned} $$
(A.16)
$$ \begin{aligned} I_{{{\text{f}}z}} \ddot{\psi }_{{{\text{f}}i}} & = \left[ {F_{{y{\text{fL}}\left( {2i - 1} \right)}} - F_{{y{\text{fL}}\left( {2i} \right)}} + F_{{y{\text{fR}}\left( {2i - 1} \right)}} - F_{{y{\text{fR}}\left( {2i} \right)}} } \right]l_{{\text{f}}} + \left( {F_{{x{\text{tL}}i}} - F_{{x{\text{tR}}i}} } \right)d_{{\text{s}}} - \left( {F_{{{\text{sxL}}i}} - F_{{{\text{sxR}}i}} } \right)d_{{{\text{sx}}}} \\ & \quad + \;\left[ {F_{{x{\text{fR}}\left( {2i - 1} \right)}} + F_{{x{\text{fR}}\left( {2i} \right)}} - F_{{x{\text{fL}}\left( {2i - 1} \right)}} - F_{{x{\text{fL}}\left( {2i} \right)}} } \right]d_{{\text{w}}} + \left( {F_{{y{\text{hxR}}i}} - F_{{y{\text{hxL}}i}} } \right)E \\ \end{aligned} $$
(A.17)

For the car body,

$$ M_{{\text{c}}} \ddot{y}_{{\text{c}}} = F_{{y{\text{tL}}1}} + F_{{y{\text{tL}}2}} + F_{{y{\text{tR}}1}} + F_{{y{\text{tR}}2}} + F_{{y{\text{hxL}}1}} + F_{{y{\text{hxL}}2}} + F_{{y{\text{hxR}}1}} + F_{{y{\text{hxR}}2}} + F_{{y{\text{zd}}1}} + F_{{y{\text{zd}}2}} + F_{2} $$
(A.18)
$$ M_{{\text{c}}} \ddot{z}_{{\text{c}}} = - F_{{z{\text{tL}}1}} - F_{{z{\text{tL}}2}} - F_{{z{\text{tR}}1}} - F_{{z{\text{tR}}2}} + M_{{\text{c}}} g + F_{3} $$
(A.19)
$$ \begin{aligned} I_{{{\text{c}}x}} \ddot{\phi }_{{\text{c}}} & = - \left( {F_{{y{\text{tL}}1}} + F_{{y{\text{tL}}2}} + F_{{y{\text{tR}}1}} + F_{{y{\text{tR}}2}} } \right)H_{{{\text{cb}}}} - \left( {F_{{y{\text{hxL}}1}} + F_{{y{\text{hxL}}2}} + F_{{y{\text{hxR}}1}} + F_{{y{\text{hxR}}2}} } \right)H_{{{\text{chx}}}} \\ & \quad + \;\left( {F_{{z{\text{tL}}1}} + F_{{z{\text{tL}}2}} - F_{{z{\text{tR}}1}} - F_{{z{\text{tR}}2}} } \right)d_{{\text{s}}} - \left( {F_{{y{\text{zd}}1}} { + }F_{{y{\text{zd2}}}} } \right)H_{{{\text{czd}}}} - M_{{{\text{r1}}}} - M_{{{\text{r2}}}} + M_{1} \\ \end{aligned} $$
(A.20)
$$ \begin{aligned} I_{{{\text{c}}y}} \ddot{\beta }_{{\text{c}}} & = \left( {F_{{z{\text{tL}}1}} - F_{{z{\text{tL}}2}} + F_{{z{\text{tR}}1}} - F_{{z{\text{tR}}2}} } \right)l_{{\text{c}}} - \left( {F_{{x{\text{tL}}1}} { + }F_{{x{\text{tL2}}}} { + }F_{{x{\text{tR}}1}} { + }F_{{x{\text{tR}}2}} } \right)H_{{{\text{cb}}}} \\ & \quad \times \;\left( {F_{{x{\text{sL}}1}} + F_{{x{\text{sL}}2}} + F_{{x{\text{sR}}1}} + F_{{x{\text{sR}}2}} } \right)H_{{{\text{csx}}}} + M_{2} \\ \end{aligned} $$
(A.21)
$$ \begin{aligned} I_{{{\text{c}}z}} \ddot{\psi }_{{\text{c}}} & = \left( {F_{{y{\text{tL}}1}} - F_{{y{\text{tL}}2}} + F_{{y{\text{tR}}1}} - F_{{y{\text{tR}}2}} } \right)l_{{\text{c}}} + \left( {F_{{x{\text{tR}}1}} + F_{{x{\text{tR2}}}} - F_{{x{\text{tL}}1}} - F_{{x{\text{tL2}}}} } \right)d_{{\text{s}}} \\ & \quad - \;\left( {F_{{x{\text{sR}}1}} + F_{{x{\text{sR2}}}} - F_{{x{\text{sL}}1}} - F_{{x{\text{sL2}}}} } \right)d_{{{\text{sx}}}} + \left( {F_{{y{\text{hxL}}1}} - F_{{y{\text{hxL}}2}} + F_{{y{\text{hxR}}1}} - F_{{y{\text{hxR}}2}} } \right)l_{{\text{c}}} \\ & \quad + \;\left( {F_{{y{\text{hxL}}1}} + F_{{y{\text{hxL}}2}} - F_{{y{\text{hxR}}1}} - F_{{y{\text{hxR}}2}} } \right)E + \left( {F_{{y{\text{zd}}1}} - F_{{y{\text{zd}}2}} } \right)l_{{\text{c}}} + M_{3} . \\ \end{aligned} $$
(A.22)

For the connecting points of the lateral dampers (i = 1, 2),

$$ K_{{{\text{hx}}}} \left( {y_{{{\text{f}}i}} + H_{{{\text{fhx}}}} \phi_{{{\text{f}}i}} - y_{{{\text{hx}}\left( {\text{L,R}} \right)i}} \pm E\psi_{{{\text{f}}i}} } \right) = C_{{{\text{hx}}}} \left( {\dot{y}_{{{\text{hx}}\left( {\text{L,R}} \right)i}} - y_{{\text{c}}} + H_{{{\text{chx}}}} \dot{\phi }_{{\text{c}}} + \left( { - 1} \right)^{i} \left( {l_{{\text{c}}} \pm E} \right)\dot{\psi }_{{\text{c}}} } \right). $$
(A.23)

For the connecting points of the yaw dampers (i = 1, 2),

$$ K_{{{\text{sx1}}}} \left( { \pm d_{{{\text{sx}}}} \psi_{{{\text{f}}i}} - H_{{{\text{fsx}}}} \beta_{{{\text{f}}i}} - y_{{{\text{sx}}\left( {{\text{L}},{\text{R}}} \right)i}} } \right) = C_{{{\text{sx1}}}} \left( {\dot{y}_{{{\text{sx}}\left( {{\text{L}},{\text{R}}} \right)i}} \mp d_{{{\text{sx}}}} \dot{\psi }_{{\text{c}}} - H_{{{\text{csx}}}} \dot{\beta }_{{\text{c}}} } \right). $$
(A.24)

Appendix B: Nomenclature and vehicle parameters

The nomenclature used in the dynamics equations follows [45] (Tables

Table 5 Nominal values of vehicle parameters

5,

Table 6 Damping characteristics of yaw dampers

6,

Table 7 Damping characteristics of lateral dampers

7,

Table 8 Characteristics of bump stop forces

8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, XH., Shi, HM. & Wu, H. Nonlinear dynamic responses of high-speed railway vehicles under combined self-excitation and forced excitation considering the influence of unsteady aerodynamic loads. Nonlinear Dyn 105, 3025–3060 (2021). https://doi.org/10.1007/s11071-021-06795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06795-4

Keywords

Navigation