Skip to main content
Log in

Global dynamic output feedback for high-order nonlinear systems with uncertain output function

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, a dynamic output feedback controller is proposed for a family of high-order nonlinear systems with uncertain output function. First, the nominal system is globally stabilized by designing a homogeneous output feedback controller. Subsequently, the nonlinear terms are tackled by introducing a well-designed gain into the output feedback controller. It can be proved that the system states can globally converge to origin, while the dynamic gain is bounded. Furthermore, the proposed control scheme can be applied to stabilize a family of high-order nonlinear upper-triangular systems. Finally, three examples illustrate the feasibility of the control method intuitively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang, X., Qian, C., Li, S.: A dual-observer approach for global output feedback stabilization of planar nonlinear systems with output-dependent growth rates. Int. J. Robust Nonlinear Control 25(18), 3818–3830 (2015)

    Article  MathSciNet  Google Scholar 

  2. Guo, T., Zhang, K., Xie, X.: Output feedback stabilization of high-order nonlinear systems with polynomial nonlinearity. J. Franklin Inst. 355(14), 6579–6596 (2018)

    Article  MathSciNet  Google Scholar 

  3. Su, Y., Zheng, C.: Robust finite-time output feedback control of perturbed double integrator. Automatica 60, 86–91 (2015)

    Article  MathSciNet  Google Scholar 

  4. Qian, C., Du, H.: Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control. IEEE Trans. Autom. Control 57(11), 2934–2939 (2012)

    Article  MathSciNet  Google Scholar 

  5. Qian, C., Lin, W.: Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm. IEEE Trans. Autom. Control 47(10), 1710–1715 (2002)

    Article  MathSciNet  Google Scholar 

  6. Sun, Z., Song, Z., Li, T., Yang, S.: Output feedback stabilization for high-order uncertain feedforward time-delay nonlinear systems. J. Franklin Inst. 352(11), 5308–5326 (2015)

    Article  MathSciNet  Google Scholar 

  7. Frye, M., Trevino, R., Qian, C.: Output feedback stabilization of nonlinear feedforward systems using low gain homogeneous domination. In: 2007 IEEE International Conference on Control and Automation, pp. 422–427. Guangzhou, China, 2007

  8. Polendo, J., Qian, C.: A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback. Int. J. Robust Nonlinear Control 17(7), 605–629 (2007)

    Article  MathSciNet  Google Scholar 

  9. Andrieu, V., Praly, L., Astolfi, A.: High gain observers with updated gain and homogeneous correction terms. Automatica 45(2), 422–428 (2009)

    Article  MathSciNet  Google Scholar 

  10. Li, G., Lin, Y., Zhang, X.: Global output feedback stabilization for a class of nonlinear systems with quantized input and output. Int. J. Robust Nonlinear Control 27(2), 187–203 (2017)

    Article  MathSciNet  Google Scholar 

  11. Wang, P., Zhang, K., Xie, X.: Global output feedback control for uncertain nonlinear feedforward systems. Int. J. Control 92(10), 2360–2368 (2019)

    Article  MathSciNet  Google Scholar 

  12. Song, S., Park, J.H., Zhang, B., Song, X.: Event-triggered adaptive practical fixed-time trajectory tracking control for unmanned surface vehicle. IEEE Trans. Circuits Syst. II Express Briefs 68(1), 436–440 (2021)

    Article  Google Scholar 

  13. Zhai, J., Karimi, H.: Universal adaptive control for uncertain nonlinear systems via output feedback. Inf. Sci. 500, 140–155 (2019)

    Article  MathSciNet  Google Scholar 

  14. Huang, Y., Liu, Y.: A compact design scheme of adaptive output-feedback control for uncertain nonlinear systems. Int. J. Control 92(2), 261–269 (2019)

    Article  MathSciNet  Google Scholar 

  15. Yu, J., Liu, Y., Wu, Y.: Output feedback stabilization for nonholonomic systems with unknown unmeasured states-dependent growth. Int. J. Robust Nonlinear Control 30(5), 1788–1801 (2020)

    Article  MathSciNet  Google Scholar 

  16. Li, F., Liu, Y.: Global output-feedback stabilization with prescribed convergence rate for nonlinear systems with structural uncertainties. Syst. Control Lett. 134(104521), (2019)

  17. Man, Y., Liu, Y.: Global output-feedback stabilization for high-order nonlinear systems with unknown growth rate. Int. J. Robust Nonlinear Control 27(5), 804–829 (2017)

    Article  MathSciNet  Google Scholar 

  18. Zhai, J., Qian, C.: Global control of nonlinear systems with uncertain output function using homogeneous domination approach. Int. J. Robust Nonlinear Control 22(14), 1543–1561 (2012)

    Article  MathSciNet  Google Scholar 

  19. Jiang, M., Xie, X., Zhang, K.: Finite-time output feedback stabilization of high-order uncertain nonlinear systems. Int. J. Control 91(6), 1338–1349 (2018)

    Article  MathSciNet  Google Scholar 

  20. Wang, P., Yu, C.: Output feedback control for nonlinear systems with uncertainties on output functions and growth rates. European J. Control 56, 107–117 (2020)

    Article  MathSciNet  Google Scholar 

  21. Sun, Z., Xing, J., Meng, Q.: Output feedback regulation of time-delay nonlinear systems with unknown continuous output function and unknown growth rate. Nonlinear Dyn. 100(2), 1309–1325 (2020)

    Article  Google Scholar 

  22. Yan, X., Song, X., Wang, Z., Zhang, Y.: Global output-feedback adaptive stabilization for planar nonlinear systems with unknown growth rate and output function. Appl. Math. Comput. 314, 299–309 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Guo, C., Xie, X.: Output feedback control of feedforward nonlinear systems with unknown output function and input matching uncertainty. Int. J. Syst. Sci. 51(6), 971–986 (2020)

    Article  MathSciNet  Google Scholar 

  24. Sun, Z., Wang, M.: Disturbance attenuation via double-domination approach for feedforward nonlinear system with unknown output function. Nonlinear Dyn. 96(4), 2523–2533 (2019)

    Article  Google Scholar 

  25. Yan, X., Liu, Y.: Global adaptive output-feedback stabilization for a class of uncertain nonlinear systems with unknown growth rate and unknown output function. Automatica 104, 173–181 (2019)

    Article  MathSciNet  Google Scholar 

  26. Zhai, J., Shu, F., Karimi, H.: Global output feedback control for a class of uncertain nonlinear systems using dynamic gain method. Int. J. Robust Nonlinear Control 30(17), 7690–7705 (2020)

    Article  MathSciNet  Google Scholar 

  27. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory. Springer, Berlin Heidelberg (2005)

    Book  Google Scholar 

  28. Zhai, J.: Adaptive control for nonlinear systems with uncertain output function and unknown homogenous growth rate. IEEE Trans. Circuits Syst. II Express Briefs 67(10), 1974–1978 (2020)

    Article  Google Scholar 

  29. Lei, H., Lin, W.: Universal adaptive control of nonlinear systems with unknown growth rate by output feedback. Automatica 42(10), 1783–1789 (2006)

    Article  MathSciNet  Google Scholar 

  30. Zhai, J., Ai, W., Fei, S.: Global output feedback stabilisation for a class of uncertain non-linear systems. IET Control Theory Appl. 7(2), 305–313 (2013)

    Article  MathSciNet  Google Scholar 

  31. Tsinias, J.: A theorem on global stabilization of nonlinear systems by linear feedback. Syst. Control Lett. 17(5), 357–362 (1991)

    Article  MathSciNet  Google Scholar 

  32. Hale, J.: Ordinary Differential Equations (2nd ed). Krieger, New York (1980)

    MATH  Google Scholar 

  33. Min, Y., Liu, Y.: Barbalat lemma and its application in analysis of system stability. Journal of Shandong University(Engineering Science) 37(1), 51–55 (2007)

  34. Zhang, X., Zhang, K., Xie, X.: Finite-time output feedback stabilization of nonlinear high-order feedforward systems. Int. J. Robust Nonlinear Control 26(8), 1794–1814 (2016)

    Article  MathSciNet  Google Scholar 

  35. Koo, M., Choi, H.: Output feedback regulation of a class of high-order feedforward nonlinear systems with unknown time-varying delay in the input under measurement sensitivity. Int. J. Robust Nonlinear Control 30(12), 4744–4763 (2020)

    Article  MathSciNet  Google Scholar 

  36. Zhou, H., Zhai, J.: Adaptive output feedback control for a class of nonlinear time-varying delay systems. Appl. Mathem. Comput. 365(124692), (2020)

  37. Lander, C.: Power Electronics. McGraw-Hill, New York (1987)

    Google Scholar 

  38. Shu, F., Zhai, J.: Dynamic event-triggered tracking control for a class of p-normal nonlinear systems. IEEE Trans. Circuits Syst. I Regul. Pap. 68(2), 808–817 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (No. 61873061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyong Zhai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 2

$$\begin{aligned}&\frac{2\sigma -r_{1}-\tau }{r_2} x_2^{\frac{2\sigma -r_{1}-\tau -r_2}{r_2}}\left( x_2^{\frac{r_{1}}{r_2}}-\lambda _2\right) x_{3}^{p_2}\nonumber \\&\quad =\frac{2\sigma -r_{1}-\tau }{r_2} x_2^{\frac{2\sigma -r_{1}-\tau -r_2}{r_2}}\left( x_2^{\frac{r_{1}}{r_2}}-{{\hat{x}}}_2^{\frac{r_{1}}{r_2}}\right) x_{3}^{p_2}. \end{aligned}$$
(102)

Noting that \(\frac{r_{1}}{r_2p_{1}}=\frac{r_{1}}{r_{1}+\tau }\le 1\), by Lemma 2, one has

$$\begin{aligned} |x_2^{\frac{r_{1}}{r_2}}-{{\hat{x}}}_2^{\frac{r_{1}}{r_2}}|&=|\left( x_2^{p_{1}}\right) ^{\frac{r_{1}}{r_2p_{1}}}-\left( {{\hat{x}}}_2^{p_{1}}\right) ^{\frac{r_{1}}{r_2p_{1}}}|\nonumber \\&\le 2^{1-\frac{r_1}{r_2p_1}}|e_2|^\frac{r_1}{\sigma }\le {\tilde{d}}|e_2|^\frac{r_1}{\sigma }. \end{aligned}$$
(103)

From the definition of \(x_2^*\) in (17), we can get

$$\begin{aligned} |x_2|^\frac{2\sigma -r_1-\tau -r_2}{r_2}&\le {\tilde{d}}\left( |\xi _2|^\frac{2\sigma -r_1-\tau -r_2}{\sigma }+|\xi _{1}|^\frac{2\sigma -r_1-\tau -r_2}{\sigma }\right) ,\nonumber \\ |x_{3}^{p_2}|&\le {\tilde{d}}\left( |\xi _{3}|^\frac{r_3p_2}{\sigma }+|\xi _2|^\frac{r_3p_2}{\sigma }\right) . \end{aligned}$$
(104)

By Lemma 4, it yields

$$\begin{aligned} |x_2^{\frac{2\sigma -r_1-\tau -r_2}{r_2}}x_{3}^{p_2} |&\le {\tilde{d}}\left( |\xi _2|^\frac{2\sigma -r_1-\tau -r_2}{\sigma } +|\xi _{1}|^\frac{2\sigma -r_1-\tau -r_2}{\sigma }\right) \nonumber \\&\quad \times \left( |\xi _{3}|^\frac{r_3p_2}{\sigma }+|\xi _2|^\frac{r_3p_2}{\sigma }\right) \nonumber \\&\le {\tilde{d}}\left( |\xi _{1}|^\frac{2\sigma -r_1}{\sigma }+|\xi _{2}|^\frac{2\sigma -r_1}{\sigma }+|\xi _{3}|^\frac{2\sigma -r_1}{\sigma }\right) . \end{aligned}$$
(105)

Substituting (103) and (105) into (102) and using Lemma 4, it yields

$$\begin{aligned}&\frac{2\sigma -r_1-\tau }{r_2} x_2^{\frac{2\sigma -r_1-\tau -r_2}{r_2}}(x_2^{\frac{r_1}{r_2}}-\lambda _2)x_{3}^{p_2}\nonumber \\&\quad \le {\tilde{d}}(|\xi _{1}|^\frac{2\sigma -r_1}{\sigma }+|\xi _{2}|^\frac{2\sigma -r_1}{\sigma }+|\xi _{3}|^\frac{2\sigma -r_1}{\sigma })|e_2|^\frac{r_1}{\sigma }\nonumber \\&\quad \le \frac{1}{12}\sum _{j=1}^{3}\xi _j^2+\alpha _2e_2^2 \end{aligned}$$
(106)

with a constant \(\alpha _2>0\).

Proof of Proposition 3

$$\begin{aligned}&l_{1}\left( 1-\frac{\partial h}{\partial x_1}\right) {{\hat{x}}}_2^{p_{1}}\left( x_2^{\frac{2\sigma -r_{1}-\tau }{r_2}}-\lambda _2^{\frac{2\sigma -r_{1}-\tau }{r_{1}}}\right) \nonumber \\&=l_{1}\left( 1-\frac{\partial h}{\partial x_1}\right) {{\hat{x}}}_2^{p_{1}}\left( x_2^{\frac{2\sigma -r_{1}-\tau }{r_2}}-{{\hat{x}}}_2^{\frac{2\sigma -r_{1}-\tau }{r_2}}\right) \nonumber \\&\le {\tilde{d}}l_{1}|{{\hat{x}}}_2^{p_{1}}||x_2^{\frac{2\sigma -r_{1}-\tau }{r_2}}-{{\hat{x}}}_2^{\frac{2\sigma -r_{1}-\tau }{r_{1}}}|. \end{aligned}$$
(107)

Noting from the definition of \(\xi _2\) and \(e_2\), one has

$$\begin{aligned} |{{\hat{x}}}_2^{p_1}|&\le |x_2^{p_{1}}-e_2^{r_2p_{1}/\sigma }|\nonumber \\&\le {\tilde{d}}\left( |e_2|^{r_2p_{1}/\sigma }+|\xi _2|^{r_2p_{1}/\sigma }+|\xi _{1}|^{r_2p_{1}/\sigma }\right) . \end{aligned}$$
(108)

Noting that \(\frac{2\sigma -r_1-\tau }{r_{1}}\ge 1\), by Lemma 2, one has

$$\begin{aligned} |x_2^{\frac{2\sigma -r_{1}-\tau }{r_2}}-{{\hat{x}}}_2^{\frac{2\sigma -r_{1}-\tau }{r_{1}}}|&=|\left( x_2^{p_{1}}\right) ^{\frac{2\sigma -r_{1}-\tau }{r_2p_{1}}}-\left( {{\hat{x}}}_2^{p_{1}}\right) ^{\frac{2\sigma -r_{1}-\tau }{r_2p_{1}}}|\nonumber \\&\le {\tilde{d}}|e_2|^\frac{2\sigma -r_{1}-\tau }{\sigma }+{{\bar{d}}}_1|x_2|^{\frac{2\sigma -r_{1}-\tau }{r_2}} \end{aligned}$$
(109)

where \({{\bar{d}}}_1\) is a small enough constant.

Similar to (104), we have

$$\begin{aligned} |x_2|^{\frac{2\sigma -r_{1}-\tau }{r_2}}\le {\tilde{d}}\left( |\xi _2|^\frac{2\sigma -r_1-\tau }{\sigma }+|\xi _{1}|^\frac{2\sigma -r_1-\tau }{\sigma }\right) . \end{aligned}$$
(110)

Substituting (108), (109) and (110) into (107) with using Lemma 4, it yields

$$\begin{aligned}&l_{1}\left( 1-\frac{\partial h}{\partial x_1}\right) {{\hat{x}}}_2^{p_{1}}\left( x_2^{\frac{2\sigma -r_{1}-\tau }{r_2}}-\lambda _2^{\frac{2\sigma -r_{1}-\tau }{r_{1}}}\right) \nonumber \\&\quad \le {\tilde{d}}l_1\left( |e_2|^{r_2p_{1}/\sigma }+|\xi _2|^{r_2p_{1}/\sigma }+|\xi _{1}|^{r_2p_{1}/\sigma }\right) \nonumber \\&\qquad \times \left( {\tilde{d}}|e_2|^\frac{2\sigma -r_{1}-\tau }{\sigma }+{{\bar{d}}}_1{\tilde{d}}\left( |\xi _2|^\frac{2\sigma -r_1-\tau }{\sigma }+|\xi _{1}|^\frac{2\sigma -r_1-\tau }{\sigma }\right) \right) \nonumber \\&\quad \le l_1{{\check{\alpha }}}\left( \xi _1^2+\xi _2^2\right) +l_1{{\hat{\alpha }}} e_2^2 \end{aligned}$$
(111)

where \({{\check{\alpha }}}>0\) and \(0<{{\hat{\alpha }}}<m_2\) are positive constants.

Proof of Proposition 5:

$$\begin{aligned}&\frac{2\sigma -r_{n-1}-\tau }{r_n} x_n^{\frac{2\sigma -r_{n-1}-\tau -r_n}{r_n}}\left( x_n^{\frac{r_{n-1}}{r_n}}-\lambda _n\right) u^{p_n}\nonumber \\&\quad =\frac{2\sigma -r_{n-1}-\tau }{r_n} x_n^{\frac{2\sigma -r_{n-1}-\tau -r_n}{r_n}}u^{p_n} \nonumber \\&\quad \times \left( \left( x_n^{p_{n-1}}\right) ^{\frac{r_{n-1}}{r_np_{n-1}}}-\left( {{\hat{x}}}_n^{p_{n-1}}\right) ^{\frac{r_{n-1}}{r_np_{n-1}}}-l_{n-1}\left( x_{n-1}-{{\hat{x}}}_{n-1}\right) \right) \end{aligned}$$
(112)

By the homogeneous degree of u from (32), one has

$$\begin{aligned} |u^{p_n}|\le {\tilde{d}}\Vert {{\hat{x}}}\Vert _{\varDelta }^{r_n+\tau } \end{aligned}$$
(113)

where \(\Vert {{\hat{x}}}\Vert _{\varDelta }=(|y|^{2/r_1}+\sum _{i=2}^{n}|{{\hat{x}}}_i|^{2/r_i})^{1/2}\), \(\varDelta _{{{\hat{x}}}}=(r_1,r_2,\dots ,r_n)\). Thus, by the definition of \(e_i\), one has

$$\begin{aligned} |u^{p_n}|&\le {\tilde{d}}\left( |y|^\frac{2}{r_1}+\sum _{i=2}^{n}|{{\hat{x}}}_i|^\frac{2}{r_i}\right) ^\frac{r_n+\tau }{2}\nonumber \\&\le {\tilde{d}}\left( |y|^\frac{2}{r_1}+\sum _{i=2}^{n}|x_i^{p_{i-1}}-e_i^{r_ip_{i-1}/\sigma }|^\frac{2}{r_ip_{i-1}}\right) ^\frac{r_n+\tau }{2}\nonumber \\&\le {\tilde{d}}\left( |y|^\frac{r_n+\tau }{r_1}+\sum _{i=2}^{n}|x_i|^\frac{r_n+\tau }{r_i}+\sum _{i=2}^{n}|e_i|^\frac{r_n+\tau }{\sigma }\right) \nonumber \\&\le {\tilde{d}}\left( \sum _{i=1}^{n}|\xi _i|^\frac{r_n+\tau }{\sigma }+\sum _{i=2}^{n}|e_i|^\frac{r_n+\tau }{\sigma }\right) . \end{aligned}$$
(114)

Noting that \(\frac{r_{n-1}}{r_np_{n-1}}=\frac{r_{n-1}}{r_{n-1}+\tau }\le 1\) and by Lemma 2, it yields

$$\begin{aligned}&|x_{n-1}-{{\hat{x}}}_{n-1}|= |\left( x_{n-1}^{p_{n-2}}\right) ^\frac{1}{p_{n-2}}-\left( {{\hat{x}}}_{n-1}^{p_{n-2}}\right) ^\frac{1}{p_{n-2}}|\nonumber \\&\quad \le 2^{1-\frac{1}{p_{n-2}}}|e_{n-1}|^\frac{r_{n-1}}{\sigma }\le {\tilde{d}}|e_{n-1}|^\frac{r_{n-1}}{\sigma },\nonumber \\&\qquad |\left( x_n^{p_{n-1}}\right) ^\frac{r_{n-1}}{r_np_{n-1}}-\left( {{\hat{x}}}_n^{p_{n-1}}\right) ^\frac{r_{n-1}}{r_np_{n-1}}| \le 2^{1-\frac{r_{n-1}}{r_np_{n-1}}}|e_n|^\frac{r_{n-1}}{\sigma }\nonumber \\&\quad \le {\tilde{d}}|e_n|^\frac{r_{n-1}}{\sigma }. \end{aligned}$$
(115)

From the definition of \(x_n^*\), we can get

$$\begin{aligned} |x_n|^\frac{2\sigma -r_{n-1}-\tau -r_n}{r_n}&\le {\tilde{d}}\left( |\xi _n|^\frac{2\sigma -r_{n-1}-\tau -r_n}{\sigma }\right. \nonumber \\&\left. +|\xi _{n-1}|^\frac{2\sigma -r_{n-1}-\tau -r_n}{\sigma }\right) . \end{aligned}$$
(116)

With (114), (115) and (116) and Lemma 4 in mind, one has

$$\begin{aligned}&\frac{2\sigma -r_{n-1}-\tau }{r_n} x_n^{\frac{2\sigma -r_{n-1}-\tau -r_n}{r_n}}(x_n^{\frac{r_{n-1}}{r_n}}-\lambda _n) u^{p_n}\nonumber \\&\quad \le {\tilde{d}}\left( |\xi _{n-1}|^{\frac{2\sigma -r_{n-1}-\tau -r_n}{\sigma }}+|\xi _{n}|^{\frac{2\sigma -r_{n-1}-\tau -r_n}{\sigma }}\right) \nonumber \\&\qquad \times \left( \sum _{i=1}^{n}|\xi _i|^\frac{r_n+\tau }{\sigma }+\sum _{i=2}^{n}|e_i|^\frac{r_n+\tau }{\sigma }\right) \nonumber \\&\qquad \times \left( {\tilde{d}}|e_n|^\frac{r_{n-1}}{\sigma }+l_{n-1}{\tilde{d}}|e_{n-1}|^\frac{r_{n-1}}{\sigma }\right) \nonumber \\&\quad \le \frac{1}{8}\sum _{i=1}^{n}\xi _i^2+\bar{\alpha }\sum _{i=2}^n e_i^2+g_n\left( l_{n-1}\right) e_{n-1}^2 \end{aligned}$$
(117)

with \({\bar{\alpha }}\) being a positive constant and \(g_n(l_{n-1})\) being a continuous function of \(l_{n-1}\).

Proof of Proposition 7:

In the light of the definitions of \(x_{n+1}^*\) and u, it follows that

$$\begin{aligned}&\xi _n^\frac{2\sigma -r_n-\tau }{\sigma }\left( u^{p_n}-x_{n+1}^{*p_n}\right) \nonumber \\&\quad \le {\tilde{d}}|\xi _n|^\frac{2\sigma -r_n-\tau }{\sigma }|\beta _n^{p_n}\left( {{\hat{x}}}_n^{\frac{\sigma }{r_n}}+\beta _{n-1}^{\frac{\sigma }{r_n}}\right. \nonumber \\&\qquad \left. \left( {{\hat{x}}}_{n-1}^{\frac{\sigma }{r_{n-1}}}+\cdots +\beta _2^{\frac{\sigma }{r_3}}\left( {{\hat{x}}}_2^{\frac{\sigma }{r_2}} \right. \right. \right. \nonumber \\&\qquad \left. \left. \left. +\beta _1^{\frac{\sigma }{r_2}}y^\frac{\sigma }{r_1}\right) \cdots \right) \right) ^\frac{r_{n+1}p_n}{\sigma }-\beta _n^{p_n}\left( x_n^{\frac{\sigma }{r_n}}+\beta _{n-1}^{\frac{\sigma }{r_n}}\right. \nonumber \\&\qquad \left. \left( x_{n-1}^{\frac{\sigma }{r_{n-1}}} +\cdots +\beta _2^{\frac{\sigma }{r_3}}\right. \right. \nonumber \\&\qquad \left. \left. \left( x_2^{\frac{\sigma }{r_2}}+\beta _1^{\frac{\sigma }{r_2}}y^\frac{\sigma }{r_1}\right) \cdots \right) \right) ^\frac{r_{n+1}p_n}{\sigma }|\nonumber \\&\le {\tilde{d}}|\xi _n|^\frac{2\sigma -r_n-\tau }{\sigma }\left( \sum _{i=2}^{n}|x_i^\frac{\sigma }{r_i}-{{\hat{x}}}_i^\frac{\sigma }{r_i}|\right) ^\frac{r_{n+1}p_n}{\sigma }. \end{aligned}$$
(118)

Since \(\sigma /(r_ip_{i-1})\ge 1\), by the definition of \(e_i\) and Lemma 2, one has

$$\begin{aligned} |x_i^\frac{\sigma }{r_i}-{{\hat{x}}}_i^\frac{\sigma }{r_i}|&\le |\left( x_i^{p_{i-1}}\right) ^\frac{\sigma }{r_ip_{i-1}}-\left( {{\hat{x}}}_i^{p_{i-1}}\right) ^\frac{\sigma }{r_ip_{i-1}}|\nonumber \\&\le {\tilde{d}}|e_i|+{{\bar{d}}}_2|x_i|^\frac{\sigma }{r_i} \end{aligned}$$
(119)

with \({{\bar{d}}}_2>0\) a small enough constant. In line with (116), one has

$$\begin{aligned} |x_i|^\frac{\sigma }{r_i} \le {\tilde{d}}\left( |\xi _i|+|\xi _{i-1}|\right) . \end{aligned}$$
(120)

Substituting (119) and (120) into (118), such that

$$\begin{aligned}&\xi _n^\frac{2\sigma -r_n-\tau }{\sigma }\left( u^{p_n}-x_{n+1}^{*p_n}\right) \nonumber \\&\quad \le {\tilde{d}}|\xi _n|^\frac{2\sigma -r_n-\tau }{\sigma }\sum _{i=2}^{n}\left( |e_i|^\frac{r_{n+1}p_n}{\sigma }+{{\bar{d}}}_2\right. \nonumber \\&\quad \left. \left( |\xi _i|^\frac{r_{n+1}p_n}{\sigma }+|\xi _{i-1}|^\frac{r_{n+1}p_n}{\sigma }\right) \right) \nonumber \\&\quad \le \frac{1}{4}\sum _{i=1}^{n}\xi _i^2+{\tilde{\alpha }}\sum _{j=2}^n e_j^2 \end{aligned}$$
(121)

with a positive constant \({\tilde{\alpha }}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Zhai, J. Global dynamic output feedback for high-order nonlinear systems with uncertain output function. Nonlinear Dyn 104, 2389–2409 (2021). https://doi.org/10.1007/s11071-021-06426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06426-y

Keywords

Navigation